Integrable quadratic Hamiltonians with a linear Lie-Poisson bracket

被引:2
|
作者
Wolf, T. [1 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
关键词
Hamiltonian systems; integrability; computer algebra;
D O I
10.1007/s10714-006-0293-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quadratic Hamiltonians with a linear Lie-Poisson bracket have a number of applications in mechanics. For example, the Lie-Poisson bracket e(3) includes the Euler-Poinsot model describing motion of a rigid body around a fixed point under gravity and the Kirchhoff model describes the motion of a rigid body in ideal fluid. Among the applications with a Lie-Poisson bracket so(4) and so(3, 1) is the description of free rigid body motion in a space of constant curvature. Advances in computer algebra algorithms, in implementations and hardware, together allow the computation of Hamiltonians with higher degree first integrals providing new results in the classic search for integrable models. A computer algebra module enabling related computations in a 3-dimensional vector formalism is described.
引用
收藏
页码:1115 / 1127
页数:13
相关论文
共 50 条
  • [31] Quantization of Lie-Poisson structures by peripheric chains
    Lyakhovsky, VD
    del Olmo, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : 5731 - 5750
  • [32] LIE-POISSON DESCRIPTION OF HAMILTONIAN RAY OPTICS
    HOLM, DD
    WOLF, KB
    PHYSICA D, 1991, 51 (1-3): : 189 - 199
  • [33] LIE-POISSON STRUCTURES OVER DIFFERENTIAL ALGEBRAS
    Zharinov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1337 - 1349
  • [34] EXPLICIT LIE-POISSON INTEGRATION AND THE EULER EQUATIONS
    MCLACHLAN, RI
    PHYSICAL REVIEW LETTERS, 1993, 71 (19) : 3043 - 3046
  • [35] Poisson integrators for Lie-Poisson structures on R3
    Song, Lina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [36] Deformations of the Lie-Poisson sphere of a compact semisimple Lie algebra
    Marcut, Ioan
    COMPOSITIO MATHEMATICA, 2014, 150 (04) : 568 - 578
  • [37] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [38] Casimir preserving stochastic Lie-Poisson integrators
    Luesink, Erwin
    Ephrati, Sagy
    Cifani, Paolo
    Geurts, Bernard
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [39] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    V. G. Kupriyanov
    M. A. Kurkov
    P. Vitale
    Journal of High Energy Physics, 2023
  • [40] Deformed Lie-Poisson structures for quantized groups
    Lyakhovsky, VD
    Mirolubov, AM
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (01) : 63 - 70