Integrable quadratic Hamiltonians with a linear Lie-Poisson bracket

被引:2
|
作者
Wolf, T. [1 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
关键词
Hamiltonian systems; integrability; computer algebra;
D O I
10.1007/s10714-006-0293-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quadratic Hamiltonians with a linear Lie-Poisson bracket have a number of applications in mechanics. For example, the Lie-Poisson bracket e(3) includes the Euler-Poinsot model describing motion of a rigid body around a fixed point under gravity and the Kirchhoff model describes the motion of a rigid body in ideal fluid. Among the applications with a Lie-Poisson bracket so(4) and so(3, 1) is the description of free rigid body motion in a space of constant curvature. Advances in computer algebra algorithms, in implementations and hardware, together allow the computation of Hamiltonians with higher degree first integrals providing new results in the classic search for integrable models. A computer algebra module enabling related computations in a 3-dimensional vector formalism is described.
引用
收藏
页码:1115 / 1127
页数:13
相关论文
共 50 条
  • [41] SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS
    ALEKSEEV, AY
    MALKIN, AZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (01) : 147 - 173
  • [42] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    PHYSICA D, 1991, 50 (01): : 80 - 88
  • [43] The Lie-Poisson structure of the LAE-α equation
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 25 - 57
  • [44] Classification and Casimir invariants of Lie-Poisson brackets
    Thiffeault, JL
    Morrison, PJ
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) : 205 - 244
  • [45] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [46] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    Kupriyanov, V. G.
    Kurkov, M. A.
    Vitale, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [47] Hamiltonian analysis in Lie-Poisson gauge theory
    Bascone, Francesco
    Kurkov, Maxim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (06)
  • [48] ORTHOGONAL STRUCTURE ON A LIE-ALGEBRA AND THE ASSOCIATED LIE-POISSON STRUCTURE
    MEDINA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (10): : 507 - 510
  • [49] Numerical evidence of nonintegrability of certain Lie-Poisson system
    Maciejewski, AJ
    Gozdziewski, K
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 133 - 142
  • [50] Symplectic leaves in real Banach Lie-Poisson spaces
    Beltita, D
    Ratiu, TS
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (04) : 753 - 779