COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA

被引:0
|
作者
La Barbiera, M. [1 ]
Restuccia, G. [1 ]
机构
[1] Univ Messina, Dept Math, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
Grobner bases; symmetric algebra; dimension; depth; MONOMIAL IDEALS; S-SEQUENCES;
D O I
10.18514/MMN.2016.1323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study algebraic invariants of the symmetric algebra Sym(R)(L) of the square-free monomial ideal L = In-1 + J(n-1) in the polynomial ring R = K[X-1, ..., X-n; Y-1, ..., Y-n] where In-1 (resp. J(n-1)) is generated by all square-free monomials of degree n-1 in the variables X-1, ..., X-n (resp. Y-1, ..., Y-n). In particular, the dimension and the depth of Sym(R)(L) are investigated by techniques of Grobner bases and theory of s-sequences.
引用
收藏
页码:777 / 789
页数:13
相关论文
共 50 条
  • [31] Computing generic bivariate Grobner bases with MATHEMAGIX
    Larrieu, Robin
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2019, 53 (02): : 41 - 44
  • [32] Towards a certified and efficient computing of Grobner bases
    Jorge, JS
    Gulías, VM
    Freire, JL
    Sánchez, JJ
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2005, 2005, 3643 : 111 - 120
  • [33] On computing Grobner bases in rings of differential operators
    Ma XiaoDong
    Sun Yao
    Wang DingKang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1077 - 1087
  • [34] An efficient method for computing comprehensive Grobner bases
    Kapur, Deepak
    Sun, Yao
    Wang, Dingkang
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 52 : 124 - 142
  • [35] Inference of polynomial invariants for imperative programs: A farewell to Grobner bases
    Cachera, David
    Jensen, Thomas
    Jobin, Arnaud
    Kirchner, Florent
    SCIENCE OF COMPUTER PROGRAMMING, 2014, 93 : 89 - 109
  • [36] Utilizing moment invariants and Grobner bases to reason about shapes
    Schweitzer, H
    Straach, J
    COMPUTATIONAL INTELLIGENCE, 1998, 14 (04) : 461 - 474
  • [37] Inference of Polynomial Invariants for Imperative Programs: A Farewell to Grobner Bases
    Cachera, David
    Jensen, Thomas
    Jobin, Arnaud
    Kirchner, Florent
    STATIC ANALYSIS, SAS 2012, 2012, 7460 : 58 - 74
  • [38] Grobner-Shirshov bases for relations of a Lie algebra and its enveloping algebra
    Bokut, LA
    Malcolmson, P
    ALGEBRAS AND COMBINATORICS, 1999, : 47 - 54
  • [39] Symmetric and Rees algebras of Koszul cycles and their Grobner bases
    Herzog, J
    Tang, ZM
    Zarzuela, S
    MANUSCRIPTA MATHEMATICA, 2003, 112 (04) : 489 - 509
  • [40] SYMMETRIC POLYOMINO TILINGS, TRIBONES, IDEALS, AND GROBNER BASES
    Dizdarevic, Manuela Muzika
    Zivaljevic, Rade T.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 1 - 23