COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA

被引:0
|
作者
La Barbiera, M. [1 ]
Restuccia, G. [1 ]
机构
[1] Univ Messina, Dept Math, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
Grobner bases; symmetric algebra; dimension; depth; MONOMIAL IDEALS; S-SEQUENCES;
D O I
10.18514/MMN.2016.1323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study algebraic invariants of the symmetric algebra Sym(R)(L) of the square-free monomial ideal L = In-1 + J(n-1) in the polynomial ring R = K[X-1, ..., X-n; Y-1, ..., Y-n] where In-1 (resp. J(n-1)) is generated by all square-free monomials of degree n-1 in the variables X-1, ..., X-n (resp. Y-1, ..., Y-n). In particular, the dimension and the depth of Sym(R)(L) are investigated by techniques of Grobner bases and theory of s-sequences.
引用
收藏
页码:777 / 789
页数:13
相关论文
共 50 条
  • [41] Grobner-Shirshov bases for symmetric brace algebras
    Li, Yu
    Mo, Qiuhui
    Bokut, Leonid A.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 892 - 904
  • [42] Multiplicative bases, Grobner bases, and right Grobner bases
    Green, EL
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 601 - 623
  • [43] GROBNER-SHIRSHOV BASES OF THE LIE ALGEBRA Bn+
    Koryukin, A. N.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (01) : 65 - 94
  • [44] GROBNER-SHIRSHOV BASES OF THE LIE ALGEBRA Dn+
    Koryukin, A. N.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (04) : 573 - 614
  • [45] A computer algebra approach to relational systems using Grobner bases
    Laita, LM
    Roanes-Lozano, E
    de Ledesma, L
    Calvo, T
    Gozález-Sotos, L
    RELATIONAL METHODS IN COMPUTER SCIENCE, 2002, 2561 : 124 - 133
  • [46] Computer algebra methods for equivariant dynamical systems - Grobner bases
    Gatermann, K
    COMPUTER ALGEBRA METHODS FOR EQUIVARIANT DYNAMICAL SYSTEMS, 2000, 1728 : 1 - 45
  • [47] An Extended S-polynomial for Computing Grobner Bases
    He, Jinao
    Zhong, Xiuqin
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 738 - 740
  • [48] ON THE COMPLEXITY OF COMPUTING GROBNER BASES IN CHARACTERISTIC-2
    ACCIARO, V
    INFORMATION PROCESSING LETTERS, 1994, 51 (06) : 321 - 323
  • [49] Computing strong regular characteristic pairs with Grobner bases
    Dong, Rina
    Wang, Dongming
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 : 312 - 327
  • [50] Role of Involutive Criteria in Computing Boolean Grobner Bases
    Gerdt, V. P.
    Zinin, M. V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (02) : 90 - 97