COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA

被引:0
|
作者
La Barbiera, M. [1 ]
Restuccia, G. [1 ]
机构
[1] Univ Messina, Dept Math, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
Grobner bases; symmetric algebra; dimension; depth; MONOMIAL IDEALS; S-SEQUENCES;
D O I
10.18514/MMN.2016.1323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study algebraic invariants of the symmetric algebra Sym(R)(L) of the square-free monomial ideal L = In-1 + J(n-1) in the polynomial ring R = K[X-1, ..., X-n; Y-1, ..., Y-n] where In-1 (resp. J(n-1)) is generated by all square-free monomials of degree n-1 in the variables X-1, ..., X-n (resp. Y-1, ..., Y-n). In particular, the dimension and the depth of Sym(R)(L) are investigated by techniques of Grobner bases and theory of s-sequences.
引用
收藏
页码:777 / 789
页数:13
相关论文
共 50 条
  • [21] Equivariant Grobner Bases of Symmetric Toric Ideals
    Krone, Robert
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 311 - 318
  • [22] A Survey on Algorithms for Computing Comprehensive Grobner Systems and Comprehensive Grobner Bases
    Lu Dong
    Sun Yao
    Wang Dingkang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (01) : 234 - 255
  • [23] Signature Grobner bases, bases of syzygies and cofactor reconstruction in the free algebra
    Hofstadler, Clemens
    Verron, Thibaut
    JOURNAL OF SYMBOLIC COMPUTATION, 2022, 113 : 211 - 241
  • [24] A HYBRID GROBNER BASES APPROACH TO COMPUTING POWER INTEGRAL BASES
    Robertson, L.
    Russell, R.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 427 - 437
  • [25] On the finiteness of Grobner bases computation in quotients of the free algebra
    Nordbeck, P
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 11 (03) : 157 - 180
  • [26] Interactions between Computer Algebra (Grobner Bases) and Cryptology
    Faugere, Jean-Charles
    ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 383 - 384
  • [27] ON THE COMPLEXITY OF COMPUTING CRITICAL POINTS WITH GROBNER BASES
    Spaenlehauer, Pierre-Jean
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1382 - 1401
  • [28] Computing homology using generalized Grobner bases
    Hall, Becky Eide
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 : 59 - 71
  • [29] Opal: A system for computing noncommutative Grobner bases
    Green, EL
    Heath, LS
    Keller, BJ
    REWRITING TECHNIQUES AND APPLICATIONS, 1997, 1232 : 331 - 334
  • [30] Towards a certified and efficient computing of Grobner bases
    Jorge, JS
    Gulías, VM
    Freire, JL
    Sánchez, JJ
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2005, 2005, 3643 : 111 - 120