Inference of polynomial invariants for imperative programs: A farewell to Grobner bases

被引:12
|
作者
Cachera, David [1 ,2 ]
Jensen, Thomas [2 ,3 ]
Jobin, Arnaud [1 ,2 ]
Kirchner, Florent [4 ]
机构
[1] ENS Cachan, Antenne Bretagne, Bruz, France
[2] IRISA, Rennes, France
[3] Inria Rennes, Bretagne Atlantique, Rennes, France
[4] CEA, LIST, Gif Sur Yvette, France
关键词
Polynomial invariants; Static analysis; Abstract interpretation; GENERATION;
D O I
10.1016/j.scico.2014.02.028
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The article presents a static analysis for computing polynomial invariants for imperative programs. The analysis is derived from an abstract interpretation of a backwards semantics, and computes preconditions for equalities of the form g = 0 to hold at the end of execution. A distinguishing feature of the technique is that it computes polynomial loop invariants without resorting to Grobner base computations. The analysis uses remainder computations over parameterized polynomials in order to handle conditionals and loops efficiently. The algorithm can analyze and find a large majority of loop invariants reported previously in the literature, and executes significantly faster than implementations using Grobner bases. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 109
页数:21
相关论文
共 50 条
  • [1] Inference of Polynomial Invariants for Imperative Programs: A Farewell to Grobner Bases
    Cachera, David
    Jensen, Thomas
    Jobin, Arnaud
    Kirchner, Florent
    STATIC ANALYSIS, SAS 2012, 2012, 7460 : 58 - 74
  • [2] Grobner bases in asymptotic analysis of perturbed polynomial programs
    Ejov, Vladimir
    Filar, Jerzy A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 64 (01) : 1 - 16
  • [3] POLYNOMIAL DIVISION AND GROBNER BASES
    Zeada, Samira
    TEACHING OF MATHEMATICS, 2013, 16 (01): : 22 - 28
  • [4] Grobner bases for polynomial systems with parameters
    Montes, Antonio
    Wibmer, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (12) : 1391 - 1425
  • [5] The λ-Grobner bases under polynomial composition
    Liu, Jinwang
    Li, Dongmei
    Chen, Xiaosong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (04) : 610 - 613
  • [6] Polynomial selection for computing Grobner bases
    Ito, Takuma
    Nitta, Atsushi
    Hoshi, Yuta
    Shinohara, Naoyuki
    Uchiyama, Shigenori
    JSIAM LETTERS, 2021, 13 : 72 - 75
  • [7] THE STRUCTURE OF POLYNOMIAL IDEALS AND GROBNER BASES
    DUBE, TW
    SIAM JOURNAL ON COMPUTING, 1990, 19 (04) : 750 - 773
  • [8] Polynomial ideals for sandpiles and their Grobner bases
    Cori, R
    Rossin, D
    Salvy, B
    THEORETICAL COMPUTER SCIENCE, 2002, 276 (1-2) : 1 - 15
  • [9] COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA
    La Barbiera, M.
    Restuccia, G.
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 777 - 789
  • [10] Reduced Grobner Bases in Polynomial Rings over a Polynomial Ring
    Nabeshima, Katsusuke
    MATHEMATICS IN COMPUTER SCIENCE, 2009, 2 (04) : 587 - 599