Inference of polynomial invariants for imperative programs: A farewell to Grobner bases

被引:12
|
作者
Cachera, David [1 ,2 ]
Jensen, Thomas [2 ,3 ]
Jobin, Arnaud [1 ,2 ]
Kirchner, Florent [4 ]
机构
[1] ENS Cachan, Antenne Bretagne, Bruz, France
[2] IRISA, Rennes, France
[3] Inria Rennes, Bretagne Atlantique, Rennes, France
[4] CEA, LIST, Gif Sur Yvette, France
关键词
Polynomial invariants; Static analysis; Abstract interpretation; GENERATION;
D O I
10.1016/j.scico.2014.02.028
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The article presents a static analysis for computing polynomial invariants for imperative programs. The analysis is derived from an abstract interpretation of a backwards semantics, and computes preconditions for equalities of the form g = 0 to hold at the end of execution. A distinguishing feature of the technique is that it computes polynomial loop invariants without resorting to Grobner base computations. The analysis uses remainder computations over parameterized polynomials in order to handle conditionals and loops efficiently. The algorithm can analyze and find a large majority of loop invariants reported previously in the literature, and executes significantly faster than implementations using Grobner bases. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 109
页数:21
相关论文
共 50 条
  • [31] New Operated Polynomial Identities and Grobner-Shirshov Bases
    Wang, Jinwei
    Zhu, Zhicheng
    Gao, Xing
    MATHEMATICS, 2022, 10 (06)
  • [32] Bases for polynomial invariants of conjugates of permutation groups
    Göbel, M
    Walter, J
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 32 (01): : 58 - 61
  • [33] Polynomial approximations of the relational semantics of imperative programs
    Colon, Michael A.
    SCIENCE OF COMPUTER PROGRAMMING, 2007, 64 (01) : 76 - 96
  • [34] Properties of entire functions over polynomial rings via Grobner bases
    Apel, J
    Stückrad, J
    Tworzewski, P
    Winiarski, T
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2003, 14 (01) : 1 - 10
  • [35] Finding Polynomial Loop Invariants for Probabilistic Programs
    Feng, Yijun
    Zhang, Lijun
    Jansen, David N.
    Zhan, Naijun
    Xia, Bican
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS (ATVA 2017), 2017, 10482 : 400 - 416
  • [36] Decomposing Polynomial Sets Simultaneously into Grobner Bases and Normal Triangular Sets
    Dong, Rina
    Mou, Chenqi
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 : 77 - 92
  • [37] GROBNER BASES FOR IDEALS IN UNIVARIATE POLYNOMIAL RINGS OVER VALUATION RINGS
    Roslavcev, Maja
    MATEMATICKI VESNIK, 2021, 73 (03): : 183 - 190
  • [38] GROBNER BASES FOR POLYNOMIAL IDEALS OVER COMMUTATIVE REGULAR-RINGS
    WEISPFENNING, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 378 : 336 - 347
  • [39] Grobner bases for the rings of special orthogonal and 2 x 2 matrix invariants
    Domokos, M
    Drensky, V
    JOURNAL OF ALGEBRA, 2001, 243 (02) : 706 - 716
  • [40] COMPUTING GLOBAL MINIMA TO POLYNOMIAL OPTIMIZATION PROBLEMS USING GROBNER BASES
    HAGGLOF, K
    LINDBERG, PO
    SVENSSON, L
    JOURNAL OF GLOBAL OPTIMIZATION, 1995, 7 (02) : 115 - 125