COMPUTING GROBNER BASES AND INVARIANTS OF THE SYMMETRIC ALGEBRA

被引:0
|
作者
La Barbiera, M. [1 ]
Restuccia, G. [1 ]
机构
[1] Univ Messina, Dept Math, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
Grobner bases; symmetric algebra; dimension; depth; MONOMIAL IDEALS; S-SEQUENCES;
D O I
10.18514/MMN.2016.1323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study algebraic invariants of the symmetric algebra Sym(R)(L) of the square-free monomial ideal L = In-1 + J(n-1) in the polynomial ring R = K[X-1, ..., X-n; Y-1, ..., Y-n] where In-1 (resp. J(n-1)) is generated by all square-free monomials of degree n-1 in the variables X-1, ..., X-n (resp. Y-1, ..., Y-n). In particular, the dimension and the depth of Sym(R)(L) are investigated by techniques of Grobner bases and theory of s-sequences.
引用
收藏
页码:777 / 789
页数:13
相关论文
共 50 条
  • [1] Computing Grobner Bases within Linear Algebra
    Suzuki, Akira
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 310 - 321
  • [2] Transcendence bases of the algebra of vector invariants for a symmetric group
    Stepanov, SA
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 487 - 501
  • [3] GROBNER BASES AND DIFFERENTIAL ALGEBRA
    FERRO, GC
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 129 - 140
  • [4] Linear Algebra for Computing Grobner Bases of Linear Recursive Multidimensional Sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 61 - 68
  • [5] Linear algebra for computing Grobner bases of linear recursive multidimensional sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 83 : 36 - 67
  • [6] Grobner bases of symmetric ideals
    Steidel, Stefan
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 : 72 - 86
  • [7] Noetherian quotients of the algebra of partial difference polynomials and Grobner bases of symmetric ideals
    Gerdt, Vladimir
    La Scala, Roberto
    JOURNAL OF ALGEBRA, 2015, 423 : 1233 - 1261
  • [8] Computing inhomogeneous Grobner bases
    Bigatti, A. M.
    Caboara, M.
    Robbiano, L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 498 - 510
  • [9] Grobner bases of symmetric quotients and applications
    Michler, RI
    ALGEBRA, ARITHMETIC AND GEOMETRY WITH APPLICATIONS: PAPERS FROM SHREERAM S ABHYANKARS 70TH BIRTHDAY CONFERENCE, 2004, : 627 - 637
  • [10] A case study of Grid Computing and computer algebra: parallel Grobner Bases and Characteristic Sets
    Ajwa, Iyad A.
    JOURNAL OF SUPERCOMPUTING, 2007, 41 (01): : 53 - 62