Computing generic bivariate Grobner bases with MATHEMAGIX

被引:1
|
作者
Larrieu, Robin [1 ]
机构
[1] Ecole Polytech, Lab Informat, LIX, CNRS,UMR 7161, 1 Rue Honore dEstienne dOrves, F-91120 Palaiseau, France
来源
关键词
All Open Access; Green;
D O I
10.1145/3371991.3371994
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A, B is an element of K[X, Y] be two bivariate polynomials over an effective field K, and let G be the reduced Grobner basis of the ideal I := hA, Bi generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, G admits a so-called concise representation that helps computing normal forms more efficiently [7]. Actually, given this concise representation, a polynomial P is an element of K[X, Y] can be reduced modulo G with quasi-optimal complexity (in terms of the size of the input A, B, P). Moreover, the concise representation can be computed from the input A, B with quasi-optimal complexity as well. The present paper reports on an efficient implementation for these two tasks in the free software MATHEMAGIX [10]. This implementation is included in MATHEMAGIX as a library called LARRIX.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [1] Grobner bases of generic ideals
    Capaverde, Juliane
    Gao, Shuhong
    JOURNAL OF ALGEBRA, 2024, 641 : 27 - 48
  • [2] Computing inhomogeneous Grobner bases
    Bigatti, A. M.
    Caboara, M.
    Robbiano, L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 498 - 510
  • [3] A NEW FRAMEWORK FOR COMPUTING GROBNER BASES
    Gao, Shuhong
    Volny, Frank
    Wang, Mingsheng
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 449 - 465
  • [4] COMPUTING GROBNER BASES ASSOCIATED WITH LATTICES
    Alvarez-Barrientos, Ismara
    Borges-Quintana, Mijail
    Angel Borges-Trenard, Miguel
    Panario, Daniel
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 851 - 860
  • [5] p-adic algorithm for bivariate Grobner bases
    Schost, Eric
    St-Pierre, Catherine
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 508 - 516
  • [6] FGb: A Library for Computing Grobner Bases
    Faugere, Jean-Charles
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 84 - 87
  • [7] Degrevlex Grobner bases of generic complete intersections
    Moreno-Socías, G
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (03) : 263 - 283
  • [8] Involutive algorithms for computing Grobner bases
    Gerdt, VP
    Computational Commutative and Non-Commutative Algebraic Geometry, 2005, 196 : 199 - 225
  • [9] Polynomial selection for computing Grobner bases
    Ito, Takuma
    Nitta, Atsushi
    Hoshi, Yuta
    Shinohara, Naoyuki
    Uchiyama, Shigenori
    JSIAM LETTERS, 2021, 13 : 72 - 75
  • [10] Modular algorithms for computing Grobner bases
    Arnold, EA
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (04) : 403 - 419