Let A, B is an element of K[X, Y] be two bivariate polynomials over an effective field K, and let G be the reduced Grobner basis of the ideal I := hA, Bi generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, G admits a so-called concise representation that helps computing normal forms more efficiently [7]. Actually, given this concise representation, a polynomial P is an element of K[X, Y] can be reduced modulo G with quasi-optimal complexity (in terms of the size of the input A, B, P). Moreover, the concise representation can be computed from the input A, B with quasi-optimal complexity as well. The present paper reports on an efficient implementation for these two tasks in the free software MATHEMAGIX [10]. This implementation is included in MATHEMAGIX as a library called LARRIX.
机构:
Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, LMIB, Sch Math Sci, Beijing 100191, Peoples R ChinaBeihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, LMIB, Sch Math Sci, Beijing 100191, Peoples R China
Dong, Rina
Wang, Dongming
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, LMIB, Sch Math Sci, Beijing 100191, Peoples R China
Ctr Natl Rech Sci, F-75794 Paris 16, FranceBeihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, LMIB, Sch Math Sci, Beijing 100191, Peoples R China
机构:
Univ Paris 06, Sorbonne Univ, 7606,LIP6, F-75005 Paris, France
CNRS, UMR 7606, LIP6, F-75005 Paris, France
Inria, Paris Ctr, PolSys Project, Paris, FranceUniv Paris 06, Sorbonne Univ, 7606,LIP6, F-75005 Paris, France
Faugere, Jean-Charles
El Din, Mohab Safey
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Sorbonne Univ, 7606,LIP6, F-75005 Paris, France
CNRS, UMR 7606, LIP6, F-75005 Paris, France
Inria, Paris Ctr, PolSys Project, Paris, France
Inst Univ France, Paris, FranceUniv Paris 06, Sorbonne Univ, 7606,LIP6, F-75005 Paris, France
El Din, Mohab Safey
Verron, Thibaut
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Sorbonne Univ, 7606,LIP6, F-75005 Paris, France
CNRS, UMR 7606, LIP6, F-75005 Paris, France
Inria, Paris Ctr, PolSys Project, Paris, FranceUniv Paris 06, Sorbonne Univ, 7606,LIP6, F-75005 Paris, France
机构:
Beihang Univ, Sch Math & Syst Sci, LMIB, Beijing 100191, Peoples R China
Univ Paris 06, Paris Rocquencourt Ctr, SALSA Project, INRIA,CNRS,UFR Ingn 919,LIP6,UMR 7606, F-75252 Paris, France
Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R ChinaBeihang Univ, Sch Math & Syst Sci, LMIB, Beijing 100191, Peoples R China