Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels

被引:2
|
作者
Muller, Matthias M. M. [1 ]
Gherardini, Stefano [2 ,3 ]
Calarco, Tommaso [1 ,4 ]
Montangero, Simone [5 ]
Caruso, Filippo [3 ]
机构
[1] Forschungszentrum Julich GmbH, Peter Grunberg Inst Quantum Control PGI 8, D-52425 Julich, Germany
[2] CNR, INO, Area Sci Pk, I-34149 Trieste, Italy
[3] Univ Florence, Dept Phys & Astron, LENS, I-50019 Sesto Fiorentino, Italy
[4] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[5] Univ Padua, Dept Phys & Astron G Galilei, INFN Sez Padova, I-35131 Padua, Italy
关键词
SYSTEM;
D O I
10.1038/s41598-022-25770-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman-Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels
    Matthias M. Müller
    Stefano Gherardini
    Tommaso Calarco
    Simone Montangero
    Filippo Caruso
    Scientific Reports, 12
  • [2] Information Theoretical Limits on Quantum Control
    Kawabata, Shiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 : 189 - 192
  • [3] Information flow and error scaling for fully quantum control
    Gherardini, Stefano
    Mueller, Matthias M.
    Montangero, Simone
    Calarco, Tommaso
    Caruso, Filippo
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [4] Information Theoretical Analysis of Quantum Optimal Control
    Lloyd, S.
    Montangero, S.
    PHYSICAL REVIEW LETTERS, 2014, 113 (01)
  • [5] Dynamical control of noisy quantum memory channels
    Gordon, Goren
    Kurizki, Gershon
    PHOTONIC MATERIALS, DEVICES, AND APPLICATIONS II, 2007, 6593
  • [6] Quantum error precompensation for quantum noisy channels
    Zhang, Chengjie
    Li, Liangsheng
    Lu, Guodong
    Yuan, Haidong
    Duan, Runyao
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [7] QUANTUM INFORMATION Noisy neighbours under control
    Burkard, Guido
    NATURE MATERIALS, 2011, 10 (11) : 811 - 813
  • [8] ESTIMATION OF ERROR OF INFORMATION CHANNELS OF CONTROL SYSTEMS
    Kravchenko, A. N.
    Beloglazov, I. N.
    Kadyrov, E. D.
    JOURNAL OF MINING INSTITUTE, 2006, 169 : 137 - 139
  • [9] On optimal system design for feedback control over noisy channels
    Bao, Lei
    Skoglund, Mikael
    Johansson, Karl Henrik
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2486 - 2490
  • [10] Combined quantizer and linear error control code design for noisy channels
    Su, CH
    Hang, HM
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 747 - 750