Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels

被引:2
|
作者
Muller, Matthias M. M. [1 ]
Gherardini, Stefano [2 ,3 ]
Calarco, Tommaso [1 ,4 ]
Montangero, Simone [5 ]
Caruso, Filippo [3 ]
机构
[1] Forschungszentrum Julich GmbH, Peter Grunberg Inst Quantum Control PGI 8, D-52425 Julich, Germany
[2] CNR, INO, Area Sci Pk, I-34149 Trieste, Italy
[3] Univ Florence, Dept Phys & Astron, LENS, I-50019 Sesto Fiorentino, Italy
[4] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[5] Univ Padua, Dept Phys & Astron G Galilei, INFN Sez Padova, I-35131 Padua, Italy
关键词
SYSTEM;
D O I
10.1038/s41598-022-25770-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman-Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Optimal quantum control in dissipative environments: General formalism and perturbative limits
    Jang, Seogjoo
    Cao, Jianshu
    ACS Symposium Series, 2002, 821 : 132 - 143
  • [42] Quantum Control Machine The Limits of Control Flow in Quantum Programming
    Yuan, Charles
    Villanyi, Agnes
    Carbin, Michael
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2024, 8 (OOPSLA):
  • [43] Experimental error filtration for quantum communication over highly noisy channels
    Lamoureux, LP
    Brainis, E
    Cerf, NJ
    Emplit, P
    Haelterman, M
    Massar, S
    PHYSICAL REVIEW LETTERS, 2005, 94 (23)
  • [44] Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control
    Deffner, Sebastian
    Campbell, Steve
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (45)
  • [45] General bound on the accessible information for quantum channels with noisy measurements
    Jacobs, K
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 256 - 264
  • [46] ERROR LIMITS AND QUALITY-CONTROL
    BARNETT, RN
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 1989, 113 (08) : 829 - 830
  • [47] Beyond quantum annealing: optimal control solutions to maxcut problems
    Pecci, Giovanni
    Wang, Ruiyi
    Torta, Pietro
    Mbeng, Glen Bigan
    Santoro, Giuseppe
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [48] Optimal preview tracking control based on information fusion in error system
    Zhen, Zi-Yang
    Wang, Zhi-Sheng
    Wang, Dao-Bo
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2009, 26 (04): : 425 - 428
  • [49] A Novelty in Blahut-Arimoto Type Algorithms: Optimal Control Over Noisy Communication Channels
    Zamanipour, Makan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (06) : 6348 - 6358
  • [50] Quantum information and quantum control
    Brumer, P
    Lidar, D
    Lo, HK
    Steinberg, A
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (4-5) : 273 - 274