Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels

被引:2
|
作者
Muller, Matthias M. M. [1 ]
Gherardini, Stefano [2 ,3 ]
Calarco, Tommaso [1 ,4 ]
Montangero, Simone [5 ]
Caruso, Filippo [3 ]
机构
[1] Forschungszentrum Julich GmbH, Peter Grunberg Inst Quantum Control PGI 8, D-52425 Julich, Germany
[2] CNR, INO, Area Sci Pk, I-34149 Trieste, Italy
[3] Univ Florence, Dept Phys & Astron, LENS, I-50019 Sesto Fiorentino, Italy
[4] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[5] Univ Padua, Dept Phys & Astron G Galilei, INFN Sez Padova, I-35131 Padua, Italy
关键词
SYSTEM;
D O I
10.1038/s41598-022-25770-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman-Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Optimal measurement-based feedback control on noisy quantum systems
    Liu, Cheng-Cheng
    Wei, Ting-Sheng
    Shi, Jia-Dong
    Ding, Zhi-Yong
    He, Juan
    Wu, Tao
    Ye, Liu
    LASER PHYSICS LETTERS, 2021, 18 (11)
  • [22] Optimal control of quantum dynamics: a new theoretical approach
    Dey, BK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (25): : 4643 - 4656
  • [23] Introduction to theoretical and experimental aspects of quantum optimal control
    Ansel, Q.
    Dionis, E.
    Arrouas, F.
    Peaudecerf, B.
    Guerin, S.
    Guery-Odelin, D.
    Sugny, D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (13)
  • [24] Robust optimal control of deterministic information epidemics with noisy transition rates
    Liu, Fangzhou
    Zhang, Zengjie
    Buss, Martin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 517 : 577 - 587
  • [25] Optimal performance of feedback control systems with limited communication over noisy channels
    Mahajan, Aditya
    Teneketzis, Demosthenis
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3228 - 3235
  • [26] Error-free quantum communication through noisy channels
    Sorensen, A
    Molmer, K
    PHYSICAL REVIEW A, 1998, 58 (04): : 2745 - 2749
  • [27] Control of noisy quantum systems: Field-theory approach to error mitigation
    Hipolito, Rafael
    Goldbart, Paul M.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [28] Sending classical information via noisy quantum channels
    Schumacher, B
    Westmoreland, MD
    PHYSICAL REVIEW A, 1997, 56 (01) : 131 - 138
  • [29] Sending classical information via noisy quantum channels
    Schumacher, Benjamin
    Westmoreland, Michael D.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 56 (01):
  • [30] Classical information transfer over noisy quantum channels
    Macchiavello, C
    Palma, GM
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (4-5): : 414 - 420