Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels

被引:2
|
作者
Muller, Matthias M. M. [1 ]
Gherardini, Stefano [2 ,3 ]
Calarco, Tommaso [1 ,4 ]
Montangero, Simone [5 ]
Caruso, Filippo [3 ]
机构
[1] Forschungszentrum Julich GmbH, Peter Grunberg Inst Quantum Control PGI 8, D-52425 Julich, Germany
[2] CNR, INO, Area Sci Pk, I-34149 Trieste, Italy
[3] Univ Florence, Dept Phys & Astron, LENS, I-50019 Sesto Fiorentino, Italy
[4] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[5] Univ Padua, Dept Phys & Astron G Galilei, INFN Sez Padova, I-35131 Padua, Italy
关键词
SYSTEM;
D O I
10.1038/s41598-022-25770-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces open quantum system dynamics, we also show that the results provided by the information-time bounds are in very good agreement with the Kofman-Kurizki universal formula describing decoherence processes. Finally, we numerically test the scaling of the control accuracy as a function of the noise parameters, by means of the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Optimal Control of Logical Control Network with Noisy Inputs
    Yang, Meng
    Chu, Tianguang
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2848 - 2853
  • [32] Computation of optimal control solutions with the Tau Method and an error estimator
    Gavina, Alexandra
    Matos, Jose
    Vasconcelos, Paulo B.
    2014 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA), 2014, : 111 - 115
  • [33] STOCHASTIC OPTIMAL CONTROL WITH NOISY OBSERVATIONS
    MORTENSEN, RE
    INTERNATIONAL JOURNAL OF CONTROL, 1966, 4 (05) : 455 - +
  • [34] Exact Solutions to Minmax Optimal Control Problems for Constrained Noisy Linear Systems
    Ganguly, Siddhartha
    Chatterjee, Debasish
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2063 - 2068
  • [35] Optimal tripartite quantum teleportation protocol through noisy channels
    Sajede Harraz
    Shuang Cong
    Juan J. Nieto
    Quantum Information Processing, 22
  • [36] Optimal super dense coding over noisy quantum channels
    Shadman, Z.
    Kampermann, H.
    Macchiavello, C.
    Bruss, D.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [37] Optimal tripartite quantum teleportation protocol through noisy channels
    Harraz, Sajede
    Cong, Shuang
    Nieto, Juan J.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [38] Search complexity and resource scaling for the quantum optimal control of unitary transformations
    Moore, Katharine W.
    Chakrabarti, Raj
    Riviello, Gregory
    Rabitz, Herschel
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [39] Control Over Noisy Forward and Reverse Channels
    Yueksel, Serdar
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (05) : 1014 - 1029
  • [40] Optimal quantum control in dissipative environments: General formalism and perturbative limits
    Jang, S
    Cao, JS
    LASER CONTROL AND MANIPULATION OF MOLECULES, 2002, 821 : 132 - 143