Information Theoretical Analysis of Quantum Optimal Control

被引:82
|
作者
Lloyd, S. [1 ]
Montangero, S. [2 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[3] Univ Ulm, IQST, D-89069 Ulm, Germany
关键词
CONTROLLABILITY;
D O I
10.1103/PhysRevLett.113.010502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relations between classical information and the feasibility of accurate manipulation of quantum system dynamics. We show that if an efficient classical representation of the dynamics exists, optimal control problems on many-body quantum systems can be solved efficiently with finite precision. In particular, one-dimensional slightly entangled dynamics can be efficiently controlled. We provide a bound for the minimal time necessary to perform the optimal process given the bandwidth of the control pulse, which is the continuous version of the Solovay-Kitaev theorem. Finally, we quantify how noise affects the presented results.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels
    Muller, Matthias M. M.
    Gherardini, Stefano
    Calarco, Tommaso
    Montangero, Simone
    Caruso, Filippo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels
    Matthias M. Müller
    Stefano Gherardini
    Tommaso Calarco
    Simone Montangero
    Filippo Caruso
    Scientific Reports, 12
  • [3] Information Theoretical Limits on Quantum Control
    Kawabata, Shiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 : 189 - 192
  • [4] Quantum Information Theoretical Analysis of Quantum Secret Sharing
    Xiao He-Ling
    Guo Wang-Mei
    Wang Xiao
    CHINESE PHYSICS LETTERS, 2012, 29 (11)
  • [5] Optimal control of quantum dynamics: a new theoretical approach
    Dey, BK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (25): : 4643 - 4656
  • [6] Introduction to theoretical and experimental aspects of quantum optimal control
    Ansel, Q.
    Dionis, E.
    Arrouas, F.
    Peaudecerf, B.
    Guerin, S.
    Guery-Odelin, D.
    Sugny, D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (13)
  • [7] Theoretical analysis of a nearly optimal analog quantum search
    Cafaro, Carlo
    Alsing, Paul M.
    PHYSICA SCRIPTA, 2019, 94 (08)
  • [8] Quantum information theoretical analysis of various constructions for quantum secret sharing
    Rietjens, K
    Schoenmakers, B
    Tuyls, P
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 1598 - 1602
  • [9] Quantum optimal control: Hessian analysis of the control landscape
    Shen, Zhenwen
    Hsieh, Michael
    Rabitz, Herschel
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):
  • [10] Self-Control and Optimal Goals: A Theoretical Analysis
    Jain, Sanjay
    MARKETING SCIENCE, 2009, 28 (06) : 1027 - 1045