Information Theoretical Analysis of Quantum Optimal Control

被引:82
|
作者
Lloyd, S. [1 ]
Montangero, S. [2 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[3] Univ Ulm, IQST, D-89069 Ulm, Germany
关键词
CONTROLLABILITY;
D O I
10.1103/PhysRevLett.113.010502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relations between classical information and the feasibility of accurate manipulation of quantum system dynamics. We show that if an efficient classical representation of the dynamics exists, optimal control problems on many-body quantum systems can be solved efficiently with finite precision. In particular, one-dimensional slightly entangled dynamics can be efficiently controlled. We provide a bound for the minimal time necessary to perform the optimal process given the bandwidth of the control pulse, which is the continuous version of the Solovay-Kitaev theorem. Finally, we quantify how noise affects the presented results.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Quantum control based on quantum information
    Chen, Zonghai
    Zhang, Chenbin
    Dong, Daoyi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (07): : 969 - 977
  • [22] Quantum Control and Quantum Information Technology
    Dong, Daoyi
    Chen, Chunlin
    Jiang, Min
    Wang, Lin-Cheng
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [23] Quantum state reconstruction and optimal manipulations with quantum information
    Buzek, V
    18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 418 - 419
  • [25] Optimal manipulations with quantum information: Universal quantum machines
    Buzek, V
    QUANTUM COMMUNICATION AND INFORMATION TECHNOLOGIES, 2003, 113 : 47 - 84
  • [26] OPTIMAL ASYMMETRIC QUANTUM CLONING FOR QUANTUM INFORMATION AND COMPUTATION
    Kay, Alastair
    Ramanathan, Ravishankar
    Kaszlikowshi, Dagomir
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (9-10) : 880 - 900
  • [27] Optimal measurements for relative quantum information
    Bartlett, SD
    Rudolph, T
    Spekkens, RW
    PHYSICAL REVIEW A, 2004, 70 (03): : 032321 - 1
  • [28] Revisiting the optimal detection of quantum information
    Chitambar, Eric
    Hsieh, Min-Hsiu
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [29] Theoretical and numerical analysis of an optimal control problem related to wastewater treatment
    Martínez, A
    Rodríguez, C
    Vázquez-Méndez, ME
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) : 1534 - 1553
  • [30] Theoretical analysis of on-chip linear quantum optical information processing networks
    Hach, Edwin E., III
    Preble, Stefan F.
    Steidle, Jeffrey A.
    QUANTUM INFORMATION AND COMPUTATION XIII, 2015, 9500