Information Theoretical Analysis of Quantum Optimal Control

被引:82
|
作者
Lloyd, S. [1 ]
Montangero, S. [2 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[3] Univ Ulm, IQST, D-89069 Ulm, Germany
关键词
CONTROLLABILITY;
D O I
10.1103/PhysRevLett.113.010502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relations between classical information and the feasibility of accurate manipulation of quantum system dynamics. We show that if an efficient classical representation of the dynamics exists, optimal control problems on many-body quantum systems can be solved efficiently with finite precision. In particular, one-dimensional slightly entangled dynamics can be efficiently controlled. We provide a bound for the minimal time necessary to perform the optimal process given the bandwidth of the control pulse, which is the continuous version of the Solovay-Kitaev theorem. Finally, we quantify how noise affects the presented results.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] INFORMATION-THEORETICAL OPTIMAL SMOOTHING ESTIMATORS
    OHE, S
    TOMITA, Y
    OMATU, S
    SOEDA, T
    INFORMATION SCIENCES, 1980, 22 (03) : 201 - 215
  • [32] Quantum Pareto optimal control
    Chakrabarti, Raj
    Wu, Rebing
    Rabitz, Herschel
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [33] Optimal control for quantum detectors
    Paraj Titum
    Kevin Schultz
    Alireza Seif
    Gregory Quiroz
    B. D. Clader
    npj Quantum Information, 7
  • [34] Optimal control of a quantum measurement
    Egger, D. J.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [35] Optimal Quantum Control Theory
    James, M. R.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 : 343 - 367
  • [36] A quantum approach for optimal control
    Sandesara, Hirmay
    Shukla, Alok
    Vedula, Prakash
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [37] Optimal control of quantum revival
    Rasanen, Esa
    Heller, Eric J.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (01):
  • [38] Quantum optimal control theory
    Werschnik, J.
    Gross, E. K. U.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (18) : R175 - R211
  • [39] Optimal control of quantum revival
    Esa Räsänen
    Eric J. Heller
    The European Physical Journal B, 2013, 86
  • [40] Optimal control for quantum detectors
    Titum, Paraj
    Schultz, Kevin
    Seif, Alireza
    Quiroz, Gregory
    Clader, B. D.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)