Information flow and error scaling for fully quantum control

被引:4
|
作者
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Mueller, Matthias M. [5 ]
Montangero, Simone [6 ,7 ,8 ]
Calarco, Tommaso [5 ,9 ]
Caruso, Filippo [2 ,3 ]
机构
[1] CNR INO, Area Sci Pk, I-34149 Trieste, Italy
[2] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, LENS, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[4] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[5] Forschungszentrum Julich, Peter Grunberg Inst Quantum Control PGI 8, Julich, Germany
[6] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy
[7] Univ Padua, Padua Quantum Technol Res Ctr, Padua, Italy
[8] Ist Nazl Fis Nucl INFN, Sez Padova, I-35131 Padua, Italy
[9] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
基金
欧盟地平线“2020”;
关键词
SCHRODINGER CAT STATES; GENERATION; COMMUNICATION; ENTANGLEMENT; CHANNELS; DYNAMICS;
D O I
10.1103/PhysRevResearch.4.023027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optimally designed control of quantum systems is playing an increasingly important role to engineer novel and more efficient quantum technologies. Here, in the scenario represented by controlling an arbitrary quantum system via the interaction with an another optimally initialized auxiliary quantum system, we show that the quantum channel capacity sets the scaling behavior of the optimal control error. Specifically, by fitting the model to numerical data, we verify that the minimum control error is ensured by maximizing the quantum capacity of the channel mapping the initial control state into the target state of the controlled system, i.e., optimizing the quantum information flow from the controller to the system to be controlled. Analytical results, supported by numerical evidences, are provided when the systems and the controller are either qubits or single Bosonic modes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels
    Muller, Matthias M. M.
    Gherardini, Stefano
    Calarco, Tommaso
    Montangero, Simone
    Caruso, Filippo
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Information theoretical limits for quantum optimal control solutions: error scaling of noisy control channels
    Matthias M. Müller
    Stefano Gherardini
    Tommaso Calarco
    Simone Montangero
    Filippo Caruso
    Scientific Reports, 12
  • [3] Scaling up quantum chemistry simulation: Error control and automation
    Liu, Fang
    Kulik, Heather
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Error correction schemes for fully correlated quantum channels protecting both quantum and classical information
    Li, Chi-Kwong
    Lyles, Seth
    Poon, Yiu-Tung
    QUANTUM INFORMATION PROCESSING, 2020, 19 (05)
  • [5] Error correction schemes for fully correlated quantum channels protecting both quantum and classical information
    Chi-Kwong Li
    Seth Lyles
    Yiu-Tung Poon
    Quantum Information Processing, 2020, 19
  • [6] Error scaling in fault tolerant quantum computation
    Lanzagorta, Marco
    Uhlmann, Jeffrey
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (01) : 24 - 30
  • [7] Quantum information: Qubits and quantum error correction
    Bennett, CH
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (02) : 153 - 176
  • [8] Quantum Information: Qubits and Quantum Error Correction
    Charles H. Bennett
    International Journal of Theoretical Physics, 2003, 42 : 153 - 176
  • [9] Fully quantum coherent control
    Gruebele, M
    CHEMICAL PHYSICS, 2001, 267 (1-3) : 33 - 46
  • [10] Quantum Information-Flow Security: Noninterference and Access Control
    Ying, Mingsheng
    Feng, Yuan
    Yu, Nengkun
    2013 IEEE 26TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2013, : 130 - 144