Wavelet-based multiscale proper generalized decomposition

被引:4
|
作者
Leon, Angel [1 ]
Barasinski, Anais [1 ]
Abisset-Chavanne, Emmanuelle [2 ,3 ]
Cueto, Elias [4 ]
Chinesta, Francisco [5 ,6 ]
机构
[1] Ecole Cent Nantes, GeM Inst, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[2] Ecole Cent Nantes, High Performance Comp Inst, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[3] Ecole Cent Nantes, ESI Grp Chair, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[4] Univ Zaragoza, I3A, Maria de Luna S-N, Zaragoza 50018, Spain
[5] ENSAM ParisTech, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
[6] ENSAM ParisTech, ESI Grp Chair, 151 Blvd Hop, F-75013 Paris, France
来源
COMPTES RENDUS MECANIQUE | 2018年 / 346卷 / 07期
关键词
Wavelets; Proper Generalized Decomposition; Multi-resolution; Multi-scale PGD; GALERKIN METHOD; SOLVERS; FAMILY;
D O I
10.1016/j.crme.2018.04.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Separated representations at the heart of Proper Generalized Decomposition are constructed incrementally by minimizing the problem residual. However, the modes involved in the resulting decomposition do not exhibit a clear multi-scale character. In order to recover a multi-scale description of the solution within a separated representation framework, we study the use of wavelets for approximating the functions involved in the separated representation of the solution. We will prove that such an approach allows separating the different scales as well as taking profit from its multi-resolution behavior for defining adaptive strategies. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条
  • [1] Multiscale proper generalized decomposition based on the partition of unity
    Ibanez, Ruben
    Ammar, Amine
    Cueto, Elias
    Huerta, Antonio
    Duval, Jean-Louis
    Chinesta, Francisco
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (06) : 727 - 747
  • [2] Proper generalized decomposition of multiscale models
    Chinesta, F.
    Ammar, A.
    Cueto, E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 1114 - 1132
  • [3] Web traffic demand forecasting using wavelet-based multiscale decomposition
    Aussem, A
    Murtagh, F
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2001, 16 (02) : 215 - 236
  • [4] Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
    Benaouda, D.
    Murtagh, F.
    Starck, J. -L.
    Renaud, O.
    [J]. NEUROCOMPUTING, 2006, 70 (1-3) : 139 - 154
  • [5] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    Neron, David
    Ladeveze, Pierre
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) : 351 - 372
  • [6] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    David Néron
    Pierre Ladevèze
    [J]. Archives of Computational Methods in Engineering, 2010, 17 : 351 - 372
  • [7] Wavelet-based multiscale corner detection
    Hua, JP
    Liao, QM
    [J]. 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 341 - 344
  • [8] A wavelet-based mode decomposition
    Nicolay, S.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 80 (02): : 223 - 232
  • [9] A wavelet-based mode decomposition
    S. Nicolay
    [J]. The European Physical Journal B, 2011, 80 : 223 - 232
  • [10] Proper generalized decomposition of time-multiscale models
    Ammar, Amine
    Chinesta, Francisco
    Cueto, Elias
    Doblare, Manuel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (05) : 569 - 596