Proper generalized decomposition of multiscale models

被引:64
|
作者
Chinesta, F. [1 ]
Ammar, A. [2 ]
Cueto, E. [3 ]
机构
[1] Univ Nantes, EADS Corp Int Chair, GeM Inst Rech Genie Civil & Mecan, UMR CNRS ECN, F-44321 Nantes 3, France
[2] UJF, Lab Rheol, UMR CNRS INPG, F-38041 Grenoble 9, France
[3] Univ Zaragoza, Grp Struct Mech & Mat Modelling, Aragon Inst Engn Res, E-50012 Zaragoza, Spain
关键词
proper generalized decompositions; separated representations; finite sums decomposition; multidimensional models; model reduction; KINETIC-THEORY MODELS; REDUCTION; SOLVERS; FAMILY;
D O I
10.1002/nme.2794
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper the coupling of a parabolic model with a system of local kinetic equations is analyzed. A space time separated representation is proposed for the global model (this is simply the radial approximation proposed by Pierre Ladeveze in the LATIN framework (Non-linear Computational Structural Mechanics. Springer: New York, 1999)). The originality of the present work concerns the treatment of the local problem, that is first globalized (in space and time) and then fully globalized by introducing a new coordinate related to the different species involved in the kinetic model. Thanks to the non-incremental nature of both discrete descriptions (the local and the global one) the coupling is quite simple and no special difficulties are encountered by using heterogeneous time integrations. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1114 / 1132
页数:19
相关论文
共 50 条
  • [1] Proper generalized decomposition of time-multiscale models
    Ammar, Amine
    Chinesta, Francisco
    Cueto, Elias
    Doblare, Manuel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (05) : 569 - 596
  • [2] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    Neron, David
    Ladeveze, Pierre
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) : 351 - 372
  • [3] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    David Néron
    Pierre Ladevèze
    [J]. Archives of Computational Methods in Engineering, 2010, 17 : 351 - 372
  • [4] Wavelet-based multiscale proper generalized decomposition
    Leon, Angel
    Barasinski, Anais
    Abisset-Chavanne, Emmanuelle
    Cueto, Elias
    Chinesta, Francisco
    [J]. COMPTES RENDUS MECANIQUE, 2018, 346 (07): : 485 - 500
  • [5] The LATIN multiscale computational method and the Proper Generalized Decomposition
    Ladeveze, P.
    Passieux, J. -C.
    Neron, D.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) : 1287 - 1296
  • [6] Multiscale proper generalized decomposition based on the partition of unity
    Ibanez, Ruben
    Ammar, Amine
    Cueto, Elias
    Huerta, Antonio
    Duval, Jean-Louis
    Chinesta, Francisco
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (06) : 727 - 747
  • [7] FE2 multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition
    El Halabi, F.
    Gonzalez, D.
    Chico, A.
    Doblare, M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 257 : 183 - 202
  • [8] Local proper generalized decomposition
    Badias, Alberto
    Gonzalez, David
    Alfaro, Iciar
    Chinesta, Francisco
    Cueto, Elias
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (12) : 1715 - 1732
  • [9] Local Proper Generalized Decomposition
    Badias, A.
    Gonzalez, D.
    Alfaro, I.
    Chinesta, F.
    Cueto, E.
    [J]. PROCEEDINGS OF THE 20TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2017), 2017, 1896
  • [10] On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition
    Pruliere, E.
    Chinesta, F.
    Ammar, A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (04) : 791 - 810