Proper Generalized Decomposition for Multiscale and Multiphysics Problems

被引:65
|
作者
Neron, David [1 ]
Ladeveze, Pierre [1 ]
机构
[1] ENS Cachan CNRS UPMC PRES UniverSud, LMT Cachan, Paris, France
关键词
FINITE-ELEMENT-METHOD; COMPUTATIONAL STRATEGY; MODEL-REDUCTION; TIME-STEP; HOMOGENIZATION; FLUID; ALGORITHMS; FAMILY; CONSOLIDATION; INTEGRATORS;
D O I
10.1007/s11831-010-9053-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is a review of the developments of the Proper Generalized Decomposition (PGD) method for the resolution, using the multiscale/multiphysics LATIN method, of the nonlinear, time-dependent problems ((visco)plasticity, damage, aEuro broken vertical bar) encountered in computational mechanics. PGD leads to considerable savings in terms of computing time and storage, and makes engineering problems which would otherwise be completely out of range of industrial codes accessible.
引用
收藏
页码:351 / 372
页数:22
相关论文
共 50 条
  • [1] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    David Néron
    Pierre Ladevèze
    Archives of Computational Methods in Engineering, 2010, 17 : 351 - 372
  • [2] Proper generalized decomposition of multiscale models
    Chinesta, F.
    Ammar, A.
    Cueto, E.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 1114 - 1132
  • [3] Wavelet-based multiscale proper generalized decomposition
    Leon, Angel
    Barasinski, Anais
    Abisset-Chavanne, Emmanuelle
    Cueto, Elias
    Chinesta, Francisco
    COMPTES RENDUS MECANIQUE, 2018, 346 (07): : 485 - 500
  • [4] Multiscale proper generalized decomposition based on the partition of unity
    Ibanez, Ruben
    Ammar, Amine
    Cueto, Elias
    Huerta, Antonio
    Duval, Jean-Louis
    Chinesta, Francisco
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (06) : 727 - 747
  • [5] Proper generalized decomposition of time-multiscale models
    Ammar, Amine
    Chinesta, Francisco
    Cueto, Elias
    Doblare, Manuel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (05) : 569 - 596
  • [6] The LATIN multiscale computational method and the Proper Generalized Decomposition
    Ladeveze, P.
    Passieux, J. -C.
    Neron, D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) : 1287 - 1296
  • [7] Stochastic modeling of multiscale and multiphysics problems
    Zabaras, Nicholas
    Xiu, Dongbin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (43-44) : 3419 - 3419
  • [8] A proper generalized decomposition approach for high-order problems
    Quesada, C.
    Xu, G.
    Gonzalez, D.
    Alfaro, I.
    Leygue, A.
    Visonneau, M.
    Cueto, E.
    Chinesta, F.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2015, 31 (03): : 188 - 197
  • [9] On the computation of Proper Generalized Decomposition modes of parametric elliptic problems
    Azaïez M.
    Chacón Rebollo T.
    Gómez Mármol M.
    SeMA Journal, 2020, 77 (1) : 59 - 72
  • [10] A NEW ALGORITHM OF PROPER GENERALIZED DECOMPOSITION FOR PARAMETRIC SYMMETRIC ELLIPTIC PROBLEMS
    Azaiez, M.
    Ben Belgacem, F.
    Casado-Diaz, J.
    Rebollo, T. Chacon
    Murat, F.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5426 - 5445