Proper Generalized Decomposition for Multiscale and Multiphysics Problems

被引:65
|
作者
Neron, David [1 ]
Ladeveze, Pierre [1 ]
机构
[1] ENS Cachan CNRS UPMC PRES UniverSud, LMT Cachan, Paris, France
关键词
FINITE-ELEMENT-METHOD; COMPUTATIONAL STRATEGY; MODEL-REDUCTION; TIME-STEP; HOMOGENIZATION; FLUID; ALGORITHMS; FAMILY; CONSOLIDATION; INTEGRATORS;
D O I
10.1007/s11831-010-9053-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is a review of the developments of the Proper Generalized Decomposition (PGD) method for the resolution, using the multiscale/multiphysics LATIN method, of the nonlinear, time-dependent problems ((visco)plasticity, damage, aEuro broken vertical bar) encountered in computational mechanics. PGD leads to considerable savings in terms of computing time and storage, and makes engineering problems which would otherwise be completely out of range of industrial codes accessible.
引用
收藏
页码:351 / 372
页数:22
相关论文
共 50 条
  • [31] Proper generalized decomposition in the context of minimum compliance topology optimization for problems with separable geometries
    Pauwels, Tomas
    Degrande, Geert
    Schevenels, Mattias
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [32] MODULO: A software for Multiscale Proper Orthogonal Decomposition of data
    Ninni, Davide
    Mendez, Miguel A.
    SOFTWAREX, 2020, 12
  • [33] System-by-Design Methodology for Multiscale and Multiphysics Synthesis Problems
    Massa, A.
    Oliveri, G.
    Salucci, M.
    Rocca, P.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 629 - 630
  • [34] Dynamic compound wavelet matrix method for multiphysics and multiscale problems
    Muralidharan, Krishna
    Mishra, Sudib K.
    Frantziskonis, G.
    Deymier, P. A.
    Nukala, Phani
    Simunovic, Srdjan
    Pannala, Sreekanth
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [35] A DGTD-Based Multiscale Simulator for Electromagnetic Multiphysics Problems
    Yan, Su
    Jin, Jian-Ming
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 1057 - 1058
  • [36] Two examples of partitioning approaches for multiscale and multiphysics coupled problems
    Dureisseix, David
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2008, 17 (5-7): : 807 - 818
  • [37] A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
    Estep, D.
    Carey, V.
    Ginting, V.
    Tavener, S.
    Wildey, T.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [38] Proper generalized decomposition solutions within a domain decomposition strategy
    Huerta, Antonio
    Nadal, Enrique
    Chinesta, Francisco
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (13) : 1972 - 1994
  • [39] FE2 multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition
    El Halabi, F.
    Gonzalez, D.
    Chico, A.
    Doblare, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 257 : 183 - 202
  • [40] Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation
    Modesto, David
    Zlotnik, Sergio
    Huerta, Antonio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 : 127 - 149