Proper Generalized Decomposition for Multiscale and Multiphysics Problems

被引:65
|
作者
Neron, David [1 ]
Ladeveze, Pierre [1 ]
机构
[1] ENS Cachan CNRS UPMC PRES UniverSud, LMT Cachan, Paris, France
关键词
FINITE-ELEMENT-METHOD; COMPUTATIONAL STRATEGY; MODEL-REDUCTION; TIME-STEP; HOMOGENIZATION; FLUID; ALGORITHMS; FAMILY; CONSOLIDATION; INTEGRATORS;
D O I
10.1007/s11831-010-9053-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is a review of the developments of the Proper Generalized Decomposition (PGD) method for the resolution, using the multiscale/multiphysics LATIN method, of the nonlinear, time-dependent problems ((visco)plasticity, damage, aEuro broken vertical bar) encountered in computational mechanics. PGD leads to considerable savings in terms of computing time and storage, and makes engineering problems which would otherwise be completely out of range of industrial codes accessible.
引用
收藏
页码:351 / 372
页数:22
相关论文
共 50 条
  • [21] On the Use of Proper Generalized Decomposition and Model Reduction Techniques for Structural Optimization Problems
    Verron, E.
    Leygue, A.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [22] On the Optimization Problems for the Proper Generalized Decomposition and the n-Best Term Approximation
    Falco, A.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [23] Characterization of the proper generalized decomposition method for fixed-source diffusion problems
    Senecal, Jaron P.
    Ji, Wei
    ANNALS OF NUCLEAR ENERGY, 2019, 126 : 68 - 83
  • [24] A Numerical Study on Hydraulic Fracturing Problems via the Proper Generalized Decomposition Method
    Wang, Daobing
    Zlotnik, Sergio
    Diez, Pedro
    Ge, Hongkui
    Zhou, Fujian
    Yu, Bo
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 122 (02): : 703 - 720
  • [25] A numerical study on hydraulic fracturing problems via the proper generalized decomposition method
    Wang, Daobing
    Zlotnik, Sergio
    Díez, Pedro
    Ge, Hongkui
    Zhou, Fujian
    Yu, Bo
    Wang, Daobing (upcwdb@bipt.edu.cn), 1600, Tech Science Press (122): : 703 - 720
  • [26] Multiscale modeling and simulation methods for electromagnetic and multiphysics problems
    Yan, Su
    Liu, Yang
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2021, 34 (06)
  • [27] Advanced Modeling and Simulation Methods for Multiphysics and Multiscale Problems
    Yan, Su
    Wu, Yumao
    Zhao, Huapeng
    Guo, Han
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2017, 2017
  • [28] Proper generalized decomposition for geothermal applications
    Massarotti, N.
    Mauro, A.
    Trombetta, V
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 23
  • [29] Error Estimators for Proper Generalized Decomposition in Time-Dependent Electromagnetic Field Problems
    Mueller, F.
    Henneron, T.
    Clenet, S.
    Hameyer, K.
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)
  • [30] Proper generalized decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems
    Signorini, Marianna
    Zlotnik, Sergio
    Diez, Pedro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (08) : 1085 - 1102