Multiscale proper generalized decomposition based on the partition of unity

被引:6
|
作者
Ibanez, Ruben [1 ,4 ,6 ]
Ammar, Amine [2 ]
Cueto, Elias [3 ]
Huerta, Antonio [4 ]
Duval, Jean-Louis [5 ]
Chinesta, Francisco [1 ]
机构
[1] HESAM Univ, Lab PIMM, Arts & Metiers, CNRS,CNAM, Paris, France
[2] LAMPA, Arts & Metiers, Angers, France
[3] Univ Zaragoza, Aragon Inst Engn Res, Zaragoza, Spain
[4] Univ Politecn Cataluna, Lab Calcul Numer, BarcelonaTech, Barcelona, Spain
[5] ESI Grp, Rungis, France
[6] ECN, ICI Inst, Nantes, France
基金
欧盟地平线“2020”;
关键词
partition of unity; proper generalized decomposition; time multiscale; MODEL ORDER REDUCTION; HOMOGENIZATION; EQUATIONS; FLOWS;
D O I
10.1002/nme.6154
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solutions of partial differential equations could exhibit a multiscale behavior. Standard discretization techniques are constraints to mesh up to the finest scale to predict accurately the response of the system. The proposed methodology is based on the standard proper generalized decomposition rationale; thus, the PDE is transformed into a nonlinear system that iterates between microscale and macroscale states, where the time coordinate could be viewed as a 2D time, representing the microtime and macrotime scales. The macroscale effects are taken into account because of an FEM-based macrodiscretization, whereas the microscale effects are handled with unidimensional parent spaces that are replicated throughout the domain. The proposed methodology can be seen as an alternative route to circumvent prohibitive meshes arising from the necessity of capturing fine-scale behaviors.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [1] A local multiple proper generalized decomposition based on the partition of unity
    Ibanez, Ruben
    Abisset-Chavanne, Emmanuelle
    Chinesta, Francisco
    Huerta, Antonio
    Cueto, Elias
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (02) : 139 - 152
  • [2] Wavelet-based multiscale proper generalized decomposition
    Leon, Angel
    Barasinski, Anais
    Abisset-Chavanne, Emmanuelle
    Cueto, Elias
    Chinesta, Francisco
    [J]. COMPTES RENDUS MECANIQUE, 2018, 346 (07): : 485 - 500
  • [3] Proper generalized decomposition of multiscale models
    Chinesta, F.
    Ammar, A.
    Cueto, E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 1114 - 1132
  • [4] Multiscale enrichment based on partition of unity
    Fish, J
    Yuan, Z
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (10) : 1341 - 1359
  • [5] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    Neron, David
    Ladeveze, Pierre
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) : 351 - 372
  • [6] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    David Néron
    Pierre Ladevèze
    [J]. Archives of Computational Methods in Engineering, 2010, 17 : 351 - 372
  • [7] A Partition of Unity-Based Multiscale Method
    Macri, Michael
    De, Suvranu
    [J]. PROGRESS ON MESHLESS METHODS, 2009, 11 : 259 - 272
  • [8] Proper generalized decomposition of time-multiscale models
    Ammar, Amine
    Chinesta, Francisco
    Cueto, Elias
    Doblare, Manuel
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (05) : 569 - 596
  • [9] The LATIN multiscale computational method and the Proper Generalized Decomposition
    Ladeveze, P.
    Passieux, J. -C.
    Neron, D.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) : 1287 - 1296
  • [10] An Enrichment-Based Multiscale Partition of Unity Method
    Macri, M.
    De, S.
    [J]. TRENDS IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 2008, : 173 - 187