Wavelet-based multiscale proper generalized decomposition

被引:4
|
作者
Leon, Angel [1 ]
Barasinski, Anais [1 ]
Abisset-Chavanne, Emmanuelle [2 ,3 ]
Cueto, Elias [4 ]
Chinesta, Francisco [5 ,6 ]
机构
[1] Ecole Cent Nantes, GeM Inst, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[2] Ecole Cent Nantes, High Performance Comp Inst, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[3] Ecole Cent Nantes, ESI Grp Chair, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[4] Univ Zaragoza, I3A, Maria de Luna S-N, Zaragoza 50018, Spain
[5] ENSAM ParisTech, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
[6] ENSAM ParisTech, ESI Grp Chair, 151 Blvd Hop, F-75013 Paris, France
来源
COMPTES RENDUS MECANIQUE | 2018年 / 346卷 / 07期
关键词
Wavelets; Proper Generalized Decomposition; Multi-resolution; Multi-scale PGD; GALERKIN METHOD; SOLVERS; FAMILY;
D O I
10.1016/j.crme.2018.04.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Separated representations at the heart of Proper Generalized Decomposition are constructed incrementally by minimizing the problem residual. However, the modes involved in the resulting decomposition do not exhibit a clear multi-scale character. In order to recover a multi-scale description of the solution within a separated representation framework, we study the use of wavelets for approximating the functions involved in the separated representation of the solution. We will prove that such an approach allows separating the different scales as well as taking profit from its multi-resolution behavior for defining adaptive strategies. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条
  • [31] A novel wavelet-based generalized sidelobe canceller
    Chu, Y
    Fang, WH
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (09) : 1485 - 1494
  • [32] Wavelet-Based Estimation of Generalized Discriminant Functions
    Montoril, Michel H.
    Chang, Woojin
    Vidakovic, Brani
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02): : 318 - 349
  • [33] Wavelet-Based Estimation of Generalized Discriminant Functions
    Michel H. Montoril
    Woojin Chang
    Brani Vidakovic
    [J]. Sankhya B, 2019, 81 : 318 - 349
  • [34] Color image processing using wavelet-based multiscale edges
    Thomas, B
    [J]. ELEVENTH COLOR IMAGING CONFERENCE: COLOR SCIENCE AND ENGINEERING - SYSTEMS, TECHNOLOGIES, APPLICATIONS, 2003, : 94 - 99
  • [35] Affine invariant multiscale wavelet-based shape matching algorithm
    El Rube', I
    Ahmed, M
    Kamel, M
    [J]. 1ST CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS, 2004, : 217 - 224
  • [36] Wavelet-based enhancement and denoising using multiscale structure tensor
    Scheunders, P
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 569 - 572
  • [37] Hydrologic regionalization using wavelet-based multiscale entropy method
    Agarwal, A.
    Maheswaran, R.
    Sehgal, V.
    Khosa, R.
    Sivakumar, B.
    Bernhofer, C.
    [J]. JOURNAL OF HYDROLOGY, 2016, 538 : 22 - 32
  • [38] Study on wavelet-based fuzzy multiscale edge detection method
    Zhu, W
    Hou, BP
    Zhang, ZG
    Zhou, KN
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 703 - 709
  • [39] A Wavelet-Based Multiscale Ensemble Time-Scale Algorithm
    Percival, Donald B.
    Senior, Kenneth L.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (03) : 510 - 522
  • [40] Wavelet-based multiscale statistical process monitoring: A literature review
    Ganesan, R
    Das, TK
    Venkataraman, V
    [J]. IIE TRANSACTIONS, 2004, 36 (09) : 787 - 806