Wavelet-based multiscale proper generalized decomposition

被引:4
|
作者
Leon, Angel [1 ]
Barasinski, Anais [1 ]
Abisset-Chavanne, Emmanuelle [2 ,3 ]
Cueto, Elias [4 ]
Chinesta, Francisco [5 ,6 ]
机构
[1] Ecole Cent Nantes, GeM Inst, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[2] Ecole Cent Nantes, High Performance Comp Inst, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[3] Ecole Cent Nantes, ESI Grp Chair, 1 Rue Noe,BP 92101, F-44321 Nantes 3, France
[4] Univ Zaragoza, I3A, Maria de Luna S-N, Zaragoza 50018, Spain
[5] ENSAM ParisTech, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
[6] ENSAM ParisTech, ESI Grp Chair, 151 Blvd Hop, F-75013 Paris, France
来源
COMPTES RENDUS MECANIQUE | 2018年 / 346卷 / 07期
关键词
Wavelets; Proper Generalized Decomposition; Multi-resolution; Multi-scale PGD; GALERKIN METHOD; SOLVERS; FAMILY;
D O I
10.1016/j.crme.2018.04.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Separated representations at the heart of Proper Generalized Decomposition are constructed incrementally by minimizing the problem residual. However, the modes involved in the resulting decomposition do not exhibit a clear multi-scale character. In order to recover a multi-scale description of the solution within a separated representation framework, we study the use of wavelets for approximating the functions involved in the separated representation of the solution. We will prove that such an approach allows separating the different scales as well as taking profit from its multi-resolution behavior for defining adaptive strategies. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条
  • [41] Anisotropic Wavelet-Based Image Denoising Using Multiscale Products
    He, Ming
    Wang, Hao
    Xie, Hong-fu
    Yang, Ke-jun
    Gao, Qing-Wei
    [J]. CEIS 2011, 2011, 15
  • [42] The international CAPM and a wavelet-based decomposition of value at risk
    Fernandez, VP
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2005, 9 (04):
  • [43] WAVELET-BASED COUGH SIGNAL DECOMPOSITION FOR MULTIMODAL CLASSIFICATION
    Agbley, Bless Lord Y.
    Li, Jianping
    ul Haq, Aminul
    Cobbinah, Bernard
    Kulevome, Delanyo
    Agbefu, Priscilla A.
    Eleeza, Bright
    [J]. 2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 5 - 9
  • [44] Generalized wavelet-based synchrosqueezing transform: Algorithm and applications
    Tu, Xiaotong
    Hu, Yue
    Abbas, Saqlain
    Li, Fucai
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 2051 - 2062
  • [45] Performance analysis of a wavelet-based generalized sidelobe canceller
    Chu, Y
    Fang, WH
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (03) : 519 - 534
  • [46] Multiscale modelling of bubbly systems using wavelet-based mesh adaptation
    Liu, T
    Schwarz, P
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 112 - 119
  • [47] Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
    Gur, Sourav
    Danielson, Thomas
    Xiong, Qingang
    Hin, Celine
    Pannala, Sreekanth
    Frantziskonis, George
    Savara, Aditya
    Daw, C. Stuart
    [J]. CHEMICAL ENGINEERING SCIENCE, 2016, 144 : 165 - 175
  • [48] Multiscale parameterisation of passive scalars via wavelet-based numerical homogenisation
    Lo, K. W.
    Ngan, K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 82 : 217 - 234
  • [49] Wavelet-based On-line Multiscale Subspace Identification of Nuclear Reactor
    Vajpayee, Vineet
    Mukhopadhyay, Siddhartha
    Tiwari, Akhilanand Pati
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 347 - 352
  • [50] Multiscale nonlinear model for monthly streamflow forecasting: a wavelet-based approach
    Rathinasamy, Maheswaran
    Khosa, Rakesh
    [J]. JOURNAL OF HYDROINFORMATICS, 2012, 14 (02) : 424 - 442