Spatio-temporal mixture process estimation to detect dynamical changes in population

被引:0
|
作者
Pruilh, Solange [1 ,2 ]
Jannot, Anne-Sophie [2 ,3 ]
Allassonniere, Stephanie [1 ,2 ]
机构
[1] Ecole Polytech, Ctr Appl Math, Route Saclay, F-91128 Palaiseau, France
[2] Sorbonne Univ, Univ Paris, INRIA, INSERM,UMR S1138, Paris, France
[3] Hop Europeen Georges Pompidou, AP HP, Dept Stat Med Informat & Publ Hlth, Paris, France
关键词
Gaussian Mixture Model; EM algorithms; Spatio-temporal data; SPATIAL EPIDEMIOLOGY; EM;
D O I
10.1016/j.artmed.2022.102258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population monitoring is a challenge in many areas such as public health and ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatiotemporal data changes. Assuming that mixture models can correctly model populations, we propose a new version of the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and their parameters at the same time. This algorithm is compared to existing methods on several simulated datasets. We then combine the algorithm with a temporal statistical model, allowing for the detection of dynamical changes in population distributions, and call the result a spatio-temporal mixture process (STMP). We test STMPs on synthetic data, and consider several different behaviors of the distributions, to fit this process. Finally, we validate STMPs on a real data set of positive diagnosed patients to coronavirus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Background initialisation by spatio-temporal motion estimation
    Varadarajan, Sriram
    Wang, Hui
    Scotney, Bryan
    Nibouche, Omar
    [J]. 2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,
  • [32] Multiple invariance spatio-temporal spectral estimation
    Robinson, JWC
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 2821 - 2824
  • [33] Estimation of parameterized spatio-temporal dynamic models
    Xu, Ke
    Wikle, Christopher K.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (02) : 567 - 588
  • [34] Nonparametric estimation of the spatio-temporal covariance structure
    Yang, Kai
    Qiu, Peihua
    [J]. STATISTICS IN MEDICINE, 2019, 38 (23) : 4555 - 4565
  • [35] Estimation of the trend function for spatio-temporal models
    Wang, Hongxia
    Wang, Jinde
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (05) : 567 - 588
  • [36] Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
    Vieira G.
    Amaro E.
    Baccalá L.A.
    [J]. Brain Informatics, 2015, 2 (2) : 53 - 63
  • [37] Spatio-Temporal Changes of Population Density and Urbanization Pattern in China(2000–2010)
    Mao Qizhi
    Long Ying
    Wu Kang
    Zhang Qingfei
    [J]. China City Planning Review, 2016, 25 (04) : 8 - 14
  • [38] SPATIO-TEMPORAL CONSISTENCY IN VIDEO DISPARITY ESTIMATION
    Khoshabeh, Ramsin
    Chan, Stanley H.
    Nguyen, Truong Q.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 885 - 888
  • [39] Spatio-temporal crime hotspots and the ambient population
    Malleson N.
    Andresen M.A.
    [J]. Crime Science, 4 (1)
  • [40] Spatio-temporal changes in temperature over India
    Oza, Markand
    Kishtawal, C. M.
    [J]. CURRENT SCIENCE, 2015, 109 (06): : 1154 - 1158