Local dimension-reduced dynamical spatio-temporal models for resting state network estimation

被引:0
|
作者
Vieira G. [1 ]
Amaro E. [2 ]
Baccalá L.A. [3 ]
机构
[1] Inter-institutional Grad Program on Bioinformatics, University of São Paulo, São Paulo
[2] LIM-44, Department of Radiology, University of São Paulo, São Paulo
[3] Escola Politécnica, University of São Paulo, São Paulo
基金
巴西圣保罗研究基金会;
关键词
Brain connectivity; Dynamical spatio-temporal models; Resting state fMRI; Sparsity;
D O I
10.1007/s40708-015-0011-5
中图分类号
学科分类号
摘要
To overcome the limitations of independent component analysis (ICA), today’s most popular analysis tool for investigating whole-brain spatial activation in resting state functional magnetic resonance imaging (fMRI), we present a new class of local dimension-reduced dynamical spatio-temporal model which dispenses the independence assumptions that severely limit deeper connectivity descriptions between spatial components. The new method combines novel concepts of group sparsity with contiguity-constrained clusterization to produce physiologically consistent regions of interest in illustrative fMRI data whose causal interactions may then be easily estimated, something impossible under the usual ICA assumptions. © 2015, The Author(s).
引用
收藏
页码:53 / 63
页数:10
相关论文
共 50 条
  • [1] Dimension-Reduced Modeling of Spatio-Temporal Processes
    Brynjarsdottir, Jenny
    Berliner, L. Mark
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1647 - 1659
  • [2] Sparse network estimation for dynamical spatio-temporal array models
    Lund, Adam
    Hansen, Niels Richard
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 174
  • [3] Predicting Spatio-temporal Time Series Using Dimension Reduced Local States
    Jonas Isensee
    George Datseris
    Ulrich Parlitz
    [J]. Journal of Nonlinear Science, 2020, 30 : 713 - 735
  • [4] Predicting Spatio-temporal Time Series Using Dimension Reduced Local States
    Isensee, Jonas
    Datseris, George
    Parlitz, Ulrich
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (03) : 713 - 735
  • [5] Reduced Rank Spatio-Temporal Models
    Pu, Dan
    Fang, Kuangnan
    Lan, Wei
    Yu, Jihai
    Zhang, Qingzhao
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024,
  • [6] Lattice dynamical models of adaptive spatio-temporal phenomena
    Sinha, S
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01): : 287 - 302
  • [7] Lattice dynamical models of adaptive spatio-temporal phenomena
    Sudeshna Sinha
    [J]. Pramana, 1997, 48 : 287 - 302
  • [8] Estimation of parameterized spatio-temporal dynamic models
    Xu, Ke
    Wikle, Christopher K.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (02) : 567 - 588
  • [9] Estimation of the trend function for spatio-temporal models
    Wang, Hongxia
    Wang, Jinde
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (05) : 567 - 588
  • [10] Spatio-Temporal Fractal Dimension Analysis from Resting State EEG Signals in Parkinson's Disease
    Ruiz de Miras, Juan
    Derchi, Chiara-Camilla
    Atzori, Tiziana
    Mazza, Alice
    Arcuri, Pietro
    Salvatore, Anna
    Navarro, Jorge
    Saibene, Francesca Lea
    Meloni, Mario
    Comanducci, Angela
    [J]. ENTROPY, 2023, 25 (07)