Estimation of parameterized spatio-temporal dynamic models

被引:40
|
作者
Xu, Ke [1 ]
Wikle, Christopher K. [1 ]
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
dynamic; EM algorithm; general EM; state-space; time series; spatial; spatio-temporal;
D O I
10.1016/j.jspi.2005.12.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal processes are often high-dimensional, exhibiting complicated variability across space and time. Traditional state-space model approaches to such processes in the presence of uncertain data have been shown to be useful. However, estimation of state-space models in this context is often problematic since parameter vectors and matrices are of high dimension and can have complicated dependence structures. We propose a spatio-temporal dynamic model formulation with parameter matrices restricted based on prior scientific knowledge and/or common spatial models. Estimation is carried out via the expectation-maximization (EM) algorithm or general EM algorithm. Several parameterization strategies are proposed and analytical or computational closed form EM update equations are derived for each. We apply the methodology to a model based on an advection-diffusion partial differential equation in a simulation study and also to a dimension-reduced model for a Palmer Drought Severity Index (PDSI) data set. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:567 / 588
页数:22
相关论文
共 50 条
  • [1] Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation
    Edwards, Matthew
    Castruccio, Stefano
    Hammerling, Dorit
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 151 (151)
  • [2] Estimation of the trend function for spatio-temporal models
    Wang, Hongxia
    Wang, Jinde
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (05) : 567 - 588
  • [3] Dynamic spatio-temporal models for spatial data
    Hefley, Trevor J.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Russell, Robin E.
    Walsh, Daniel P.
    [J]. SPATIAL STATISTICS, 2017, 20 : 206 - 220
  • [4] A Spatio-Temporal Model for Estimation and Efficient Tracking of Dynamic Boundaries
    Nagarathna
    Valli, S.
    Manjunath, D.
    [J]. 2014 TWENTIETH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2014,
  • [5] Robust estimation of a dynamic spatio-temporal model with structural change
    Villejo, Stephen Jun V.
    Barrios, Erniel B.
    Lansangan, Joseph Ryan G.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 505 - 518
  • [6] Sparse network estimation for dynamical spatio-temporal array models
    Lund, Adam
    Hansen, Niels Richard
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 174
  • [7] Road Condition Estimation Based on Spatio-Temporal Reflection Models
    Amthor, Manuel
    Hartmann, Bernd
    Denzler, Joachim
    [J]. PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 3 - 15
  • [8] Estimation and Inference for Spatio-Temporal Single-Index Models
    Wang, Hongxia
    Zhao, Zihan
    Hao, Hongxia
    Huang, Chao
    [J]. MATHEMATICS, 2023, 11 (20)
  • [9] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    [J]. SORT, 2011, 35 (02): : 165 - 178
  • [10] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178