Spatio-temporal mixture process estimation to detect dynamical changes in population

被引:0
|
作者
Pruilh, Solange [1 ,2 ]
Jannot, Anne-Sophie [2 ,3 ]
Allassonniere, Stephanie [1 ,2 ]
机构
[1] Ecole Polytech, Ctr Appl Math, Route Saclay, F-91128 Palaiseau, France
[2] Sorbonne Univ, Univ Paris, INRIA, INSERM,UMR S1138, Paris, France
[3] Hop Europeen Georges Pompidou, AP HP, Dept Stat Med Informat & Publ Hlth, Paris, France
关键词
Gaussian Mixture Model; EM algorithms; Spatio-temporal data; SPATIAL EPIDEMIOLOGY; EM;
D O I
10.1016/j.artmed.2022.102258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population monitoring is a challenge in many areas such as public health and ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatiotemporal data changes. Assuming that mixture models can correctly model populations, we propose a new version of the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and their parameters at the same time. This algorithm is compared to existing methods on several simulated datasets. We then combine the algorithm with a temporal statistical model, allowing for the detection of dynamical changes in population distributions, and call the result a spatio-temporal mixture process (STMP). We test STMPs on synthetic data, and consider several different behaviors of the distributions, to fit this process. Finally, we validate STMPs on a real data set of positive diagnosed patients to coronavirus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Spatio-temporal and demographic variation in the harvest of black bears: Implications for population estimation
    Diefenbach, DR
    Laake, JL
    Alt, GL
    [J]. JOURNAL OF WILDLIFE MANAGEMENT, 2004, 68 (04): : 947 - 959
  • [22] Spatio-Temporal Building Population Estimation for Highly Urbanized Areas Using GIS
    Greger, Konstantin
    [J]. TRANSACTIONS IN GIS, 2015, 19 (01) : 129 - 150
  • [23] A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process
    Rao, T. Subba
    Terdik, Gyorgy
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 936 - 959
  • [24] Adaptive background mixture model with spatio-temporal samples
    Guo, Pengyu
    Zhu, Xiaozhou
    Zhang, Hui
    Zhang, Xiaohu
    [J]. OPTIK, 2019, 183 : 433 - 440
  • [25] Spatio-temporal Gaussian Mixture Model for Background Modeling
    Soh, Youngsung
    Hae, Yongsuk
    Kim, Intaek
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 360 - 363
  • [26] Spatio-temporal interaction of bacteria mixture within biofilms
    Li, Y.
    Kim, K. S.
    Deschamps, J.
    Briandet, R.
    Trubuil, A.
    [J]. SPATIAL STATISTICS CONFERENCE 2015, PART 1, 2015, 26 : 11 - 18
  • [27] A cluster approach to spatio-temporal channel estimation
    Nilsson, M
    Völcker, B
    Ottersten, B
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 2757 - 2760
  • [28] Selectivity estimation for predictive spatio-temporal queries
    Tao, YF
    Sun, JM
    Papadias, D
    [J]. 19TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2003, : 417 - 428
  • [29] Motion estimation based on spatio-temporal correlations
    Yoon, HS
    Lee, GS
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 359 - 362
  • [30] Spatio-temporal motion estimation for transparency and occlusions
    Barth, E
    Stuke, I
    Aach, T
    Mota, C
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 65 - 68