A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process

被引:6
|
作者
Rao, T. Subba [1 ,2 ]
Terdik, Gyorgy [3 ]
机构
[1] Univ Manchester, Manchester, Lancs, England
[2] CR Rao AIMSCS, Univ Hyderabad Campus, Hyderabad, Andhra Pradesh, India
[3] Univ Debrecen, Kassai 26, H-4028 Debrecen, Hungary
关键词
Complex stochastic partial differential equations; covariance functions; discrete Fourier transforms; measurement errors; spatio-temporal processes; prediction (kriging); frequency variogram; TIME-SERIES; PARAMETER-ESTIMATION; SPACE; REGRESSION; VARIOGRAM; MODEL;
D O I
10.1111/jtsa.12245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a stationary spatio-temporal random process {Y-t (s); s is an element of R-d , t is an element of Z} and let {Y-t (s) ; i = 1, 2, ... , m; t = 1, ... , n} be a sample from the process. Our object here is to predict, given the sample, {Y-t (s(o))} for all t at the location s(o). To obtain the predictors, we define a sequence of discrete Fourier transforms {J(si) (omega(j)) ; i = 1, 2, ... , m} using the observed time series. We consider these discrete Fourier transforms as a sample from the complex valued random variable (J(s) (omega)}. Assuming that the discrete Fourier transforms satisfy a complex stochastic partial differential equation of the Laplacian type with a scaling function that is a polynomial in the temporal spectral frequency , we obtain, in a closed form, expressions for the second-order spatio-temporal spectrum and the covariance function. The spectral density function obtained corresponds to a non-separable random process. The optimal predictor of the discrete Fourier transform J(so) (omega) is in terms of the covariance functions. The estimation of the parameters of the spatio-temporal covariance function is considered and is based on the recently introduced frequency variogram method. The methods given here can be extended to situations where the observations are corrupted by independent white noise. The methods are illustrated with a real data set.
引用
收藏
页码:936 / 959
页数:24
相关论文
共 50 条
  • [1] Spatio-temporal stationary covariance models
    Ma, CS
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (01) : 97 - 107
  • [2] Families of spatio-temporal stationary covariance models
    Ma, C
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 489 - 501
  • [3] A new covariance function for spatio-temporal data analysis
    Rao, Tata Subba
    Terdik, Gyorgy
    [J]. INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 64 - 66
  • [4] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan, Lian
    Hu, Tao
    Zhu, Xinyan
    Ye, Xinyue
    Wang, Shaohua
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [5] Classes of nonseparable, spatio-temporal stationary covariance functions
    Cressie, N
    Huang, HC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1330 - 1340
  • [6] Wind speed prediction using spatio-temporal covariance
    Anup Suryawanshi
    Debraj Ghosh
    [J]. Natural Hazards, 2015, 75 : 1435 - 1449
  • [7] Wind speed prediction using spatio-temporal covariance
    Suryawanshi, Anup
    Ghosh, Debraj
    [J]. NATURAL HAZARDS, 2015, 75 (02) : 1435 - 1449
  • [8] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [9] Spatio-temporal variograms and covariance models
    Ma, CS
    [J]. ADVANCES IN APPLIED PROBABILITY, 2005, 37 (03) : 706 - 725
  • [10] COVARIANCE METHODS FOR SPATIO-TEMPORAL ANALYSIS
    SMIT, B
    [J]. PROFESSIONAL GEOGRAPHER, 1978, 30 (02): : 140 - 148