A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process

被引:6
|
作者
Rao, T. Subba [1 ,2 ]
Terdik, Gyorgy [3 ]
机构
[1] Univ Manchester, Manchester, Lancs, England
[2] CR Rao AIMSCS, Univ Hyderabad Campus, Hyderabad, Andhra Pradesh, India
[3] Univ Debrecen, Kassai 26, H-4028 Debrecen, Hungary
关键词
Complex stochastic partial differential equations; covariance functions; discrete Fourier transforms; measurement errors; spatio-temporal processes; prediction (kriging); frequency variogram; TIME-SERIES; PARAMETER-ESTIMATION; SPACE; REGRESSION; VARIOGRAM; MODEL;
D O I
10.1111/jtsa.12245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a stationary spatio-temporal random process {Y-t (s); s is an element of R-d , t is an element of Z} and let {Y-t (s) ; i = 1, 2, ... , m; t = 1, ... , n} be a sample from the process. Our object here is to predict, given the sample, {Y-t (s(o))} for all t at the location s(o). To obtain the predictors, we define a sequence of discrete Fourier transforms {J(si) (omega(j)) ; i = 1, 2, ... , m} using the observed time series. We consider these discrete Fourier transforms as a sample from the complex valued random variable (J(s) (omega)}. Assuming that the discrete Fourier transforms satisfy a complex stochastic partial differential equation of the Laplacian type with a scaling function that is a polynomial in the temporal spectral frequency , we obtain, in a closed form, expressions for the second-order spatio-temporal spectrum and the covariance function. The spectral density function obtained corresponds to a non-separable random process. The optimal predictor of the discrete Fourier transform J(so) (omega) is in terms of the covariance functions. The estimation of the parameters of the spatio-temporal covariance function is considered and is based on the recently introduced frequency variogram method. The methods given here can be extended to situations where the observations are corrupted by independent white noise. The methods are illustrated with a real data set.
引用
收藏
页码:936 / 959
页数:24
相关论文
共 50 条
  • [41] Spatio-Temporal Footprints
    Guesgen, Hans W.
    Marsland, Stephen
    [J]. INTERNATIONAL JOURNAL OF AMBIENT COMPUTING AND INTELLIGENCE, 2010, 2 (01) : 52 - 58
  • [42] Spatio-temporal segmentation
    Swain, C
    Puri, A
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [43] Spatio-temporal processes
    Harvill, Jane L.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03): : 375 - 382
  • [44] Spatio-temporal predicates
    Erwig, M
    Schneider, M
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14 (04) : 881 - 901
  • [45] Spatio-temporal histograms
    Elmongui, HG
    Mokbel, MF
    Aref, WG
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2005, 3633 : 19 - 36
  • [46] SPATIO-TEMPORAL DATABASES
    Stancic, Baldo
    Kapovic, Zdravko
    [J]. 10TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE: SGEM 2010, VOL I, 2010, : 1151 - 1158
  • [47] Spatio-Temporal Covariance Descriptors for Action and Gesture Recognition
    Sanin, Andres
    Sanderson, Conrad
    Harandi, Mehrtash T.
    Lovell, Brian C.
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 103 - 110
  • [48] Recent developments on the construction of spatio-temporal covariance models
    Ma, Chunsheng
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2008, 22 (Suppl 1) : S39 - S47
  • [49] Blockwise Euclidean likelihood for spatio-temporal covariance models
    Morales-Onate, Victor
    Crudu, Federico
    Bevilacqua, Moreno
    [J]. ECONOMETRICS AND STATISTICS, 2021, 20 : 176 - 201
  • [50] Video Segmentation by Spatio-temporal Random Walk
    Chang, Jing
    Wang, Hui
    [J]. PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON E-BUSINESS, INFORMATION MANAGEMENT AND COMPUTER SCIENCE, 2018, : 54 - 58