Spatio-temporal mixture process estimation to detect dynamical changes in population

被引:0
|
作者
Pruilh, Solange [1 ,2 ]
Jannot, Anne-Sophie [2 ,3 ]
Allassonniere, Stephanie [1 ,2 ]
机构
[1] Ecole Polytech, Ctr Appl Math, Route Saclay, F-91128 Palaiseau, France
[2] Sorbonne Univ, Univ Paris, INRIA, INSERM,UMR S1138, Paris, France
[3] Hop Europeen Georges Pompidou, AP HP, Dept Stat Med Informat & Publ Hlth, Paris, France
关键词
Gaussian Mixture Model; EM algorithms; Spatio-temporal data; SPATIAL EPIDEMIOLOGY; EM;
D O I
10.1016/j.artmed.2022.102258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population monitoring is a challenge in many areas such as public health and ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatiotemporal data changes. Assuming that mixture models can correctly model populations, we propose a new version of the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and their parameters at the same time. This algorithm is compared to existing methods on several simulated datasets. We then combine the algorithm with a temporal statistical model, allowing for the detection of dynamical changes in population distributions, and call the result a spatio-temporal mixture process (STMP). We test STMPs on synthetic data, and consider several different behaviors of the distributions, to fit this process. Finally, we validate STMPs on a real data set of positive diagnosed patients to coronavirus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Characterization of the spatio-temporal patterns in the osmosedimentation process
    Neto, CR
    Fortuna, AO
    Rosa, RR
    Ramos, FM
    Zanandrea, A
    Tenan, MA
    [J]. PHYSICA A, 2000, 283 (1-2): : 146 - 150
  • [42] Developing system to detect and analyze spatio-temporal tactile events
    Kis, Attila
    Vasarhelyi, Gabor
    [J]. 2008 11TH INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS, 2008, : 10 - 10
  • [43] Spatio-temporal point process statistics: A review
    Gonzalez, Jonatan A.
    Rodriguez-Cortes, Francisco J.
    Cronie, Ottmar
    Mateu, Jorge
    [J]. SPATIAL STATISTICS, 2016, 18 : 505 - 544
  • [44] Monitoring changes in spatio-temporal maps of disease
    Rodeiro, Carmen L. Vidal
    Lawson, Andrew B.
    [J]. BIOMETRICAL JOURNAL, 2006, 48 (03) : 463 - 480
  • [45] A Model Language for Describing Spatio-Temporal Changes
    Yao, Xinghua
    Zhou, Jie
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY - COMPANION (QRS-C 2015), 2015, : 173 - 181
  • [46] Changes in Mangrove Cover A spatio-temporal analysis
    Tekam, Manish Kumar
    Badrinarayan, S.
    Sinu, Palatty Allesh
    Lakshman, Kshama
    Mullasseri, Sileesh
    Ramanan, S. Suresh
    Baskar, Sushmitha
    Raj, Anup
    Naik, Pavithra P.
    [J]. CURRENT SCIENCE, 2018, 115 (11): : 2008 - 2009
  • [47] Characterisation of spatio-temporal structures: dynamical regimes of ionisation waves
    Atipo, A
    Caron, X
    Bonhomme, G
    Pierre, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (2-3): : 259 - 266
  • [48] Identification and analysis of spatio-temporal dynamical systems using wavelets
    Guo, L. Z.
    Billings, S. A.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (03) : 315 - 334
  • [49] Dynamical analysis of spatio-temporal CoVid-19 model
    Ghani, Mohammad
    Fahmiyah, Indah
    Ningrum, Ratih Ardiati
    Wardana, Ananta Adhi
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) : 2803 - 2829
  • [50] Self organized development of behaviors in spatio-temporal dynamical systems
    Kozma, R
    Balister, P
    Bollobas, B
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2261 - 2264