Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Henon Map

被引:0
|
作者
Gonchenko, Sergey V. V. [1 ,2 ]
Safonov, Klim A. A. [2 ]
Zelentsov, Nikita G. G. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Math Ctr Math Future Technol, Pr Gagarin 23, Nizhnii Novgorod 603022, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Dynam Syst & Applicat, Ul Bolshaya Pecherskaya 25-12, Nizhnii Novgorod 603155, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2022年 / 27卷 / 06期
基金
俄罗斯科学基金会;
关键词
reversible diffeomorphism; parabolic bifurcation; period-doubling bifurcation; TIME-REVERSAL SYMMETRY; DYNAMICAL PHENOMENA; NEWHOUSE REGIONS; SYSTEMS;
D O I
10.1134/S1560354722060041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new method for constructing multidimensional reversible maps by only two input data: a diffeomorphism T-1 and an involution h, i. e., a map (diffeomorphism) such that h(2) = Id. We construct the desired reversible map T in the form T = T-1 o T-2, where T-2 = h o T (-1)(1) o h. We also discuss how this method can be used to construct normal forms of Poincar ' e maps near mutually symmetric pairs of orbits of homoclinic or heteroclinic tangencies in reversible maps. One of such normal forms, as we show, is a two-dimensional double conservative H ' enon map H of the form <overline>x = M + cx - y(2); y = M + c <overline>y - <overline>x(2). We construct this map by the proposed method for the case when T1 is the standard H ' enon map and the involution h is h : (x, y) -> (y, x). For the map H, we study bifurcations of fixed and period-2 points, among which there are both standard bifurcations (parabolic, period-doubling and pitchfork) and singular ones (during transition through c = 0).
引用
收藏
页码:647 / 667
页数:21
相关论文
共 50 条
  • [1] Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Hénon Map
    Sergey V. Gonchenko
    Klim A. Safonov
    Nikita G. Zelentsov
    Regular and Chaotic Dynamics, 2022, 27 : 647 - 667
  • [2] Homoclinic bifurcations for the Henon map
    Sterling, D
    Dullin, HR
    Meiss, JD
    PHYSICA D, 1999, 134 (02): : 153 - 184
  • [3] Homoclinic bifurcations for the Henon map
    Sterling, D.
    Dullin, H.R.
    Meiss, J.D.
    Physica D: Nonlinear Phenomena, 1999, 134 (02): : 153 - 184
  • [4] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436
  • [5] Once more on Henon map: Analysis of bifurcations
    Sonis, M
    CHAOS SOLITONS & FRACTALS, 1996, 7 (12) : 2215 - 2234
  • [6] The three-dimensional generalized Henon map: Bifurcations and attractors
    Hampton, Amanda E. E.
    Meiss, James D. D.
    CHAOS, 2022, 32 (11)
  • [7] Memristive Henon map with hidden Neimark-Sacker bifurcations
    Rong, Kang
    Bao, Han
    Li, Houzhen
    Hua, Zhongyun
    Bao, Bocheng
    NONLINEAR DYNAMICS, 2022, 108 (04) : 4459 - 4470
  • [8] Bifurcations and chaos in a three-dimensional generalized Henon map
    Zheng, Jingjing
    Wang, Ziwei
    Li, You
    Wang, Jinliang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [9] THE GENERALIZED TIME-DELAYED HENON MAP: BIFURCATIONS AND DYNAMICS
    Bilal, Shakir
    Ramaswamy, Ramakrishna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [10] On the fundamental regions of a fixed point free conservative Henon map
    Bessa, Mario
    Rocha, Jorge
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (01) : 37 - 48