Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Henon Map

被引:0
|
作者
Gonchenko, Sergey V. V. [1 ,2 ]
Safonov, Klim A. A. [2 ]
Zelentsov, Nikita G. G. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Math Ctr Math Future Technol, Pr Gagarin 23, Nizhnii Novgorod 603022, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Dynam Syst & Applicat, Ul Bolshaya Pecherskaya 25-12, Nizhnii Novgorod 603155, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2022年 / 27卷 / 06期
基金
俄罗斯科学基金会;
关键词
reversible diffeomorphism; parabolic bifurcation; period-doubling bifurcation; TIME-REVERSAL SYMMETRY; DYNAMICAL PHENOMENA; NEWHOUSE REGIONS; SYSTEMS;
D O I
10.1134/S1560354722060041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new method for constructing multidimensional reversible maps by only two input data: a diffeomorphism T-1 and an involution h, i. e., a map (diffeomorphism) such that h(2) = Id. We construct the desired reversible map T in the form T = T-1 o T-2, where T-2 = h o T (-1)(1) o h. We also discuss how this method can be used to construct normal forms of Poincar ' e maps near mutually symmetric pairs of orbits of homoclinic or heteroclinic tangencies in reversible maps. One of such normal forms, as we show, is a two-dimensional double conservative H ' enon map H of the form <overline>x = M + cx - y(2); y = M + c <overline>y - <overline>x(2). We construct this map by the proposed method for the case when T1 is the standard H ' enon map and the involution h is h : (x, y) -> (y, x). For the map H, we study bifurcations of fixed and period-2 points, among which there are both standard bifurcations (parabolic, period-doubling and pitchfork) and singular ones (during transition through c = 0).
引用
收藏
页码:647 / 667
页数:21
相关论文
共 50 条
  • [31] Unstable Manifold of Henon Map
    Chen Bo
    Jia Meng
    ADVANCED MATERIALS DESIGN AND MECHANICS, 2012, 569 : 818 - +
  • [32] On hyperbolic plateaus of the Henon map
    Arai, Zin
    EXPERIMENTAL MATHEMATICS, 2007, 16 (02) : 181 - 188
  • [33] QUANTIZATION OF HENON MAP WITH DISSIPATION
    GRAHAM, R
    TEL, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 60 (2-4): : 127 - 136
  • [34] A parametrically modulated Henon map
    Casas, Gabriela A.
    Rech, Paulo C.
    DYNAMIC DAYS SOUTH AMERICA 2010: INTERNATIONAL CONFERENCE ON CHAOS AND NONLINEAR DYNAMICS, 2011, 285
  • [35] Bifurcation analysis of the Henon map
    Zhusubaliyev, ZT
    Rudakov, VN
    Soukhoterin, EA
    Mosekilde, E
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 5 (03) : 203 - +
  • [36] ON THE UNIVERSALITY CLASSES OF THE HENON MAP
    HAUSER, PR
    CURADO, EMF
    TSALLIS, C
    PHYSICS LETTERS A, 1985, 108 (07) : 308 - 310
  • [37] NON-PERIODIC BIFURCATIONS FOR SURFACE DIFFEOMORPHISMS
    Horita, Vanderlei
    Muniz, Nivaldo
    Sabini, Paulo Rogerio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8279 - 8300
  • [38] On Families of Diffeomorphisms with Bifurcations of Attractive and Repelling Sets
    Grines, V.
    Pochinka, O.
    Zhuzhoma, E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):
  • [39] HOMOCLINIC BIFURCATIONS AND THE AREA-CONSERVING HENON MAPPING
    DEVANEY, RL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (02) : 254 - 266
  • [40] REMARKS ON THE SYMBOLIC DYNAMICS FOR THE HENON MAP
    HANSEN, KT
    PHYSICS LETTERS A, 1992, 165 (02) : 100 - 104