Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Henon Map

被引:0
|
作者
Gonchenko, Sergey V. V. [1 ,2 ]
Safonov, Klim A. A. [2 ]
Zelentsov, Nikita G. G. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Math Ctr Math Future Technol, Pr Gagarin 23, Nizhnii Novgorod 603022, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Dynam Syst & Applicat, Ul Bolshaya Pecherskaya 25-12, Nizhnii Novgorod 603155, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2022年 / 27卷 / 06期
基金
俄罗斯科学基金会;
关键词
reversible diffeomorphism; parabolic bifurcation; period-doubling bifurcation; TIME-REVERSAL SYMMETRY; DYNAMICAL PHENOMENA; NEWHOUSE REGIONS; SYSTEMS;
D O I
10.1134/S1560354722060041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new method for constructing multidimensional reversible maps by only two input data: a diffeomorphism T-1 and an involution h, i. e., a map (diffeomorphism) such that h(2) = Id. We construct the desired reversible map T in the form T = T-1 o T-2, where T-2 = h o T (-1)(1) o h. We also discuss how this method can be used to construct normal forms of Poincar ' e maps near mutually symmetric pairs of orbits of homoclinic or heteroclinic tangencies in reversible maps. One of such normal forms, as we show, is a two-dimensional double conservative H ' enon map H of the form <overline>x = M + cx - y(2); y = M + c <overline>y - <overline>x(2). We construct this map by the proposed method for the case when T1 is the standard H ' enon map and the involution h is h : (x, y) -> (y, x). For the map H, we study bifurcations of fixed and period-2 points, among which there are both standard bifurcations (parabolic, period-doubling and pitchfork) and singular ones (during transition through c = 0).
引用
收藏
页码:647 / 667
页数:21
相关论文
共 50 条
  • [41] GEOMETRIC AND ARITHMETIC PROPERTIES OF THE HENON MAP
    SILVERMAN, JH
    MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (02) : 237 - 250
  • [42] ANALYSIS OF THE STABILITY DOMAIN FOR THE HENON MAP
    GIOVANNOZZI, M
    PHYSICS LETTERS A, 1993, 182 (2-3) : 255 - 260
  • [43] HOMOCLINIC AND HETEROCLINIC POINTS IN THE HENON MAP
    GOMEZ, G
    SIMO, C
    LECTURE NOTES IN PHYSICS, 1983, 179 : 245 - 247
  • [44] Chaotic attractor of the controlled Henon map
    Li, CP
    Xia, XH
    Chen, GR
    2004 IEEE AFRICON: 7TH AFRICON CONFERENCE IN AFRICA, VOLS 1 AND 2: TECHNOLOGY INNOVATION, 2004, : 485 - 489
  • [45] Gradient Control of Henon Map Dynamics
    Guzenko, P. Y.
    Fradkov, A. L.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (03):
  • [46] Hyperchaotic based-on henon map
    Wu, Pianhui
    Zhao, Weihua
    Zhao, Zhengxu
    Journal of Information and Computational Science, 2014, 11 (12): : 4055 - 4063
  • [47] Backbones in the parameter plane of the Henon map
    Falcolini, Corrado
    Tedeschini-Lalli, Laura
    CHAOS, 2016, 26 (01)
  • [48] Compound windows of the Henon-map
    Lorenz, Edward N.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (13) : 1689 - 1704
  • [49] Transversal homoclinic points of the Henon map
    Kirchgraber, Urs
    Stoffer, Daniel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (Suppl 5) : S187 - S204
  • [50] GENERATING PARTITIONS FOR THE DISSIPATIVE HENON MAP
    GRASSBERGER, P
    KANTZ, H
    PHYSICS LETTERS A, 1985, 113 (05) : 235 - 238