GEOMETRIC AND ARITHMETIC PROPERTIES OF THE HENON MAP

被引:19
|
作者
SILVERMAN, JH
机构
[1] Mathematics Department, Brown University, Providence, 02912, RI
关键词
D O I
10.1007/BF02571713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [1] Equilibrium measures for the Henon map at the first bifurcation: uniqueness and geometric/statistical properties
    Senti, Samuel
    Takahasi, Hiroki
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 215 - 255
  • [2] THE DYNAMICS OF THE HENON MAP
    BENEDICKS, M
    CARLESON, L
    [J]. ANNALS OF MATHEMATICS, 1991, 133 (01) : 73 - 169
  • [3] GEOMETRIC AND ARITHMETIC PROPERTIES OF INVOLUTION ALGEBRAS
    HELLEGOUARCH, Y
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 97 : 29 - 43
  • [4] A quantized Henon map
    Fornæss, JE
    Weickert, B
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) : 723 - 740
  • [5] Computational properties of the arithmetic–geometric index
    Walter Carballosa
    Ana Granados
    José Antonio Méndez Bermúdez
    Domingo Pestana
    Ana Portilla
    [J]. Journal of Mathematical Chemistry, 2022, 60 : 1854 - 1871
  • [6] Multiplicative Henon Map
    Aniszewska, Dorota
    Rybaczuk, Marek
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [7] ON THE TOPOLOGY OF THE HENON MAP
    DALESSANDRO, G
    GRASSBERGER, P
    ISOLA, S
    POLITI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22): : 5285 - 5294
  • [8] A filtered Henon map
    Borges, Vinicius S.
    Eisencraft, Marcio
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 165
  • [9] On the Chaotic Behaviour of the Henon Map
    Antognini, Francesco
    Stoffer, Daniel
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 936 - 938
  • [10] A PHYSICAL INTERPRETATION OF THE HENON MAP
    HEAGY, JF
    [J]. PHYSICA D, 1992, 57 (3-4): : 436 - 446