Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Henon Map

被引:0
|
作者
Gonchenko, Sergey V. V. [1 ,2 ]
Safonov, Klim A. A. [2 ]
Zelentsov, Nikita G. G. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Math Ctr Math Future Technol, Pr Gagarin 23, Nizhnii Novgorod 603022, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Dynam Syst & Applicat, Ul Bolshaya Pecherskaya 25-12, Nizhnii Novgorod 603155, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2022年 / 27卷 / 06期
基金
俄罗斯科学基金会;
关键词
reversible diffeomorphism; parabolic bifurcation; period-doubling bifurcation; TIME-REVERSAL SYMMETRY; DYNAMICAL PHENOMENA; NEWHOUSE REGIONS; SYSTEMS;
D O I
10.1134/S1560354722060041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new method for constructing multidimensional reversible maps by only two input data: a diffeomorphism T-1 and an involution h, i. e., a map (diffeomorphism) such that h(2) = Id. We construct the desired reversible map T in the form T = T-1 o T-2, where T-2 = h o T (-1)(1) o h. We also discuss how this method can be used to construct normal forms of Poincar ' e maps near mutually symmetric pairs of orbits of homoclinic or heteroclinic tangencies in reversible maps. One of such normal forms, as we show, is a two-dimensional double conservative H ' enon map H of the form <overline>x = M + cx - y(2); y = M + c <overline>y - <overline>x(2). We construct this map by the proposed method for the case when T1 is the standard H ' enon map and the involution h is h : (x, y) -> (y, x). For the map H, we study bifurcations of fixed and period-2 points, among which there are both standard bifurcations (parabolic, period-doubling and pitchfork) and singular ones (during transition through c = 0).
引用
收藏
页码:647 / 667
页数:21
相关论文
共 50 条
  • [21] ON THE TOPOLOGY OF THE HENON MAP
    DALESSANDRO, G
    GRASSBERGER, P
    ISOLA, S
    POLITI, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22): : 5285 - 5294
  • [22] A filtered Henon map
    Borges, Vinicius S.
    Eisencraft, Marcio
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [23] Some hyperbolicity results for Henon-like diffeomorphisms
    Hoensch, Ulrich A.
    NONLINEARITY, 2008, 21 (03) : 587 - 611
  • [24] Attractors and Commutation Sets in Henon-like Diffeomorphisms
    Selmani, Wissame
    Idjellit, Ilham
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (04): : 9 - 21
  • [25] Bifurcations of stationary measures of random diffeomorphisms
    Zmarrou, Hicham
    Homburg, Ale Jan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1651 - 1692
  • [26] On the Chaotic Behaviour of the Henon Map
    Antognini, Francesco
    Stoffer, Daniel
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 936 - 938
  • [27] A PHYSICAL INTERPRETATION OF THE HENON MAP
    HEAGY, JF
    PHYSICA D, 1992, 57 (3-4): : 436 - 446
  • [28] AN EXPLORATION OF THE HENON QUADRATIC MAP
    HITZL, DL
    ZELE, F
    PHYSICA D, 1985, 14 (03): : 305 - 326
  • [29] ON THE SYMBOLIC DYNAMICS OF THE HENON MAP
    GRASSBERGER, P
    KANTZ, H
    MOENIG, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24): : 5217 - 5230
  • [30] INVARIANT DIRECTIONS IN THE HENON MAP
    PARAMIO, M
    SESMA, J
    PHYSICS LETTERS A, 1988, 132 (2-3) : 98 - 100