Once more on Henon map: Analysis of bifurcations

被引:25
|
作者
Sonis, M
机构
关键词
D O I
10.1016/S0960-0779(96)00081-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the analysis of bifurcations approach the detailed description of bifurcation phenomena in the classical Henon map is presented. This description strongly supports the idea that the Henon map contains all possible bifurcation phenomena known for two-dimensional discrete maps. It is interesting to note that the existence of two different equilibria in the Henon map generates additional - dual - appearance of bifurcation phenomena. The proposed analysis can serve as a prototype of the bifurcation analysis for finite-dimensional iterative processes with multiple equilibria. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:2215 / 2234
页数:20
相关论文
共 50 条
  • [1] Homoclinic bifurcations for the Henon map
    Sterling, D
    Dullin, HR
    Meiss, JD
    PHYSICA D, 1999, 134 (02): : 153 - 184
  • [2] Homoclinic bifurcations for the Henon map
    Sterling, D.
    Dullin, H.R.
    Meiss, J.D.
    Physica D: Nonlinear Phenomena, 1999, 134 (02): : 153 - 184
  • [3] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436
  • [4] Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Henon Map
    Gonchenko, Sergey V. V.
    Safonov, Klim A. A.
    Zelentsov, Nikita G. G.
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (06): : 647 - 667
  • [5] The three-dimensional generalized Henon map: Bifurcations and attractors
    Hampton, Amanda E. E.
    Meiss, James D. D.
    CHAOS, 2022, 32 (11)
  • [6] Memristive Henon map with hidden Neimark-Sacker bifurcations
    Rong, Kang
    Bao, Han
    Li, Houzhen
    Hua, Zhongyun
    Bao, Bocheng
    NONLINEAR DYNAMICS, 2022, 108 (04) : 4459 - 4470
  • [7] Bifurcations and chaos in a three-dimensional generalized Henon map
    Zheng, Jingjing
    Wang, Ziwei
    Li, You
    Wang, Jinliang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [8] THE GENERALIZED TIME-DELAYED HENON MAP: BIFURCATIONS AND DYNAMICS
    Bilal, Shakir
    Ramaswamy, Ramakrishna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [9] Bifurcation analysis of the Henon map
    Zhusubaliyev, ZT
    Rudakov, VN
    Soukhoterin, EA
    Mosekilde, E
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 5 (03) : 203 - +
  • [10] ANALYSIS OF THE STABILITY DOMAIN FOR THE HENON MAP
    GIOVANNOZZI, M
    PHYSICS LETTERS A, 1993, 182 (2-3) : 255 - 260