Once more on Henon map: Analysis of bifurcations

被引:25
|
作者
Sonis, M
机构
关键词
D O I
10.1016/S0960-0779(96)00081-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the analysis of bifurcations approach the detailed description of bifurcation phenomena in the classical Henon map is presented. This description strongly supports the idea that the Henon map contains all possible bifurcation phenomena known for two-dimensional discrete maps. It is interesting to note that the existence of two different equilibria in the Henon map generates additional - dual - appearance of bifurcation phenomena. The proposed analysis can serve as a prototype of the bifurcation analysis for finite-dimensional iterative processes with multiple equilibria. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:2215 / 2234
页数:20
相关论文
共 50 条
  • [31] HOMOCLINIC BIFURCATIONS AND THE AREA-CONSERVING HENON MAPPING
    DEVANEY, RL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (02) : 254 - 266
  • [32] REMARKS ON THE SYMBOLIC DYNAMICS FOR THE HENON MAP
    HANSEN, KT
    PHYSICS LETTERS A, 1992, 165 (02) : 100 - 104
  • [33] GEOMETRIC AND ARITHMETIC PROPERTIES OF THE HENON MAP
    SILVERMAN, JH
    MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (02) : 237 - 250
  • [34] HOMOCLINIC AND HETEROCLINIC POINTS IN THE HENON MAP
    GOMEZ, G
    SIMO, C
    LECTURE NOTES IN PHYSICS, 1983, 179 : 245 - 247
  • [35] Chaotic attractor of the controlled Henon map
    Li, CP
    Xia, XH
    Chen, GR
    2004 IEEE AFRICON: 7TH AFRICON CONFERENCE IN AFRICA, VOLS 1 AND 2: TECHNOLOGY INNOVATION, 2004, : 485 - 489
  • [36] Gradient Control of Henon Map Dynamics
    Guzenko, P. Y.
    Fradkov, A. L.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (03):
  • [37] Hyperchaotic based-on henon map
    Wu, Pianhui
    Zhao, Weihua
    Zhao, Zhengxu
    Journal of Information and Computational Science, 2014, 11 (12): : 4055 - 4063
  • [38] Backbones in the parameter plane of the Henon map
    Falcolini, Corrado
    Tedeschini-Lalli, Laura
    CHAOS, 2016, 26 (01)
  • [39] Compound windows of the Henon-map
    Lorenz, Edward N.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (13) : 1689 - 1704
  • [40] Transversal homoclinic points of the Henon map
    Kirchgraber, Urs
    Stoffer, Daniel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (Suppl 5) : S187 - S204