Homoclinic bifurcations for the Henon map

被引:55
|
作者
Sterling, D [1 ]
Dullin, HR [1 ]
Meiss, JD [1 ]
机构
[1] Univ Colorado, Dept Math Appl, Boulder, CO 80309 USA
来源
PHYSICA D | 1999年 / 134卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(99)00125-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We find a bound on the parameter range for which the Henon map exhibits a complete binary horseshoe as well as a subshift of finite type. We classify homoclinic bifurcations, and study those for the area preserving case in detail. Simple forcing relations between homoclinic orbits are established. We show that a symmetry of the map gives rise to constraints on certain sequences of homoclinic bifurcations. Our numerical studies also identify the bifurcations that bound intervals on which the topological entropy is apparently constant. (C) 1999 Elsevier Science B.V. All rights reserved. MSC; 58F05; 58F03; 58C15.
引用
收藏
页码:153 / 184
页数:32
相关论文
共 50 条
  • [1] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436
  • [2] Transversal homoclinic points of the Henon map
    Kirchgraber, Urs
    Stoffer, Daniel
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (Suppl 5) : S187 - S204
  • [3] EXISTENCE OF A HOMOCLINIC POINT FOR THE HENON MAP
    MISIUREWICZ, M
    SZEWC, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (03) : 285 - 291
  • [4] HOMOCLINIC AND HETEROCLINIC POINTS IN THE HENON MAP
    GOMEZ, G
    SIMO, C
    [J]. LECTURE NOTES IN PHYSICS, 1983, 179 : 245 - 247
  • [5] HOMOCLINIC BIFURCATIONS AND THE AREA-CONSERVING HENON MAPPING
    DEVANEY, RL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (02) : 254 - 266
  • [6] Order of appearance of homoclinic points for the Henon map
    Yamaguchi, Yoshihiro
    Tanikawa, Kiyotaka
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2006, 116 (06): : 1029 - 1049
  • [7] Once more on Henon map: Analysis of bifurcations
    Sonis, M
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (12) : 2215 - 2234
  • [8] A Note on Homoclinic or Heteroclinic Orbits for the Generalized Henon Map
    Shi, Yong-guo
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 283 - 288
  • [9] Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Henon Map
    Gonchenko, Sergey V. V.
    Safonov, Klim A. A.
    Zelentsov, Nikita G. G.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2022, 27 (06): : 647 - 667
  • [10] The three-dimensional generalized Henon map: Bifurcations and attractors
    Hampton, Amanda E. E.
    Meiss, James D. D.
    [J]. CHAOS, 2022, 32 (11)