Homoclinic bifurcations for the Henon map

被引:55
|
作者
Sterling, D [1 ]
Dullin, HR [1 ]
Meiss, JD [1 ]
机构
[1] Univ Colorado, Dept Math Appl, Boulder, CO 80309 USA
来源
PHYSICA D | 1999年 / 134卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(99)00125-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We find a bound on the parameter range for which the Henon map exhibits a complete binary horseshoe as well as a subshift of finite type. We classify homoclinic bifurcations, and study those for the area preserving case in detail. Simple forcing relations between homoclinic orbits are established. We show that a symmetry of the map gives rise to constraints on certain sequences of homoclinic bifurcations. Our numerical studies also identify the bifurcations that bound intervals on which the topological entropy is apparently constant. (C) 1999 Elsevier Science B.V. All rights reserved. MSC; 58F05; 58F03; 58C15.
引用
收藏
页码:153 / 184
页数:32
相关论文
共 50 条
  • [31] THE DYNAMICS OF THE HENON MAP
    BENEDICKS, M
    CARLESON, L
    [J]. ANNALS OF MATHEMATICS, 1991, 133 (01) : 73 - 169
  • [32] A quantized Henon map
    Fornæss, JE
    Weickert, B
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) : 723 - 740
  • [33] Multiplicative Henon Map
    Aniszewska, Dorota
    Rybaczuk, Marek
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [34] ON THE TOPOLOGY OF THE HENON MAP
    DALESSANDRO, G
    GRASSBERGER, P
    ISOLA, S
    POLITI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22): : 5285 - 5294
  • [35] A filtered Henon map
    Borges, Vinicius S.
    Eisencraft, Marcio
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 165
  • [36] Homoclinic bifurcations in Chua's circuit
    Kahan, S
    Sicardi-Schifino, AC
    [J]. PHYSICA A, 1999, 262 (1-2): : 144 - 152
  • [37] HOMOCLINIC BIFURCATIONS IN NORMAL-DIMENSIONS
    FOWLER, AC
    [J]. STUDIES IN APPLIED MATHEMATICS, 1990, 83 (03) : 193 - 209
  • [38] Homoclinic bifurcations in radiating diffusion flames
    Kavousanakis, Michail E.
    Russo, Lucia
    Marra, Francesco Saverio
    Siettos, Constantinos
    [J]. COMBUSTION THEORY AND MODELLING, 2013, 17 (01) : 40 - 52
  • [39] Existence of generic cubic homoclinic tangencies for Henon maps
    Kiriki, Shin
    Soma, Teruhiko
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1029 - 1051
  • [40] Conservative homoclinic bifurcations and some applications
    Anton Gorodetski
    Vadim Kaloshin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2009, 267 : 76 - 90