Homoclinic bifurcations in radiating diffusion flames

被引:5
|
作者
Kavousanakis, Michail E. [1 ]
Russo, Lucia [2 ]
Marra, Francesco Saverio [2 ]
Siettos, Constantinos [3 ]
机构
[1] Natl Tech Univ Athens, Sch Chem Engn, GR-15780 Athens, Greece
[2] CNR, Ist Ric Combust, I-80125 Naples, Italy
[3] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, GR-15780 Athens, Greece
关键词
radiating diffusion flames; nonlinear oscillations; bifurcation analysis; homoclinic bifurcation; timestepping approach; THERMAL INSTABILITY; OSCILLATIONS; EXTINCTION; STABILITY; EVOLUTION; SPREAD;
D O I
10.1080/13647830.2012.721899
中图分类号
O414.1 [热力学];
学科分类号
摘要
We analyse the dynamics of a model describing a planar diffusion flame with radiative heat losses incorporating a single step kinetic using timestepping techniques for Lewis number equal to one. We construct the full bifurcation diagram with respect to the Damkohler number including the branches of oscillating solutions. Based on this analysis we found, for the first time, homoclinic bifurcations that mark the abrupt disappearance of the nonlinear oscillations near extinction as reported in experiments.
引用
收藏
页码:40 / 52
页数:13
相关论文
共 50 条
  • [1] Spatially localized radiating diffusion flames
    Lo Jacono, David
    Bergeon, Alain
    Knobloch, Edgar
    [J]. COMBUSTION AND FLAME, 2017, 176 : 117 - 124
  • [2] Oscillations and island evolution in radiating diffusion flames
    Miklavcic, M
    Moore, AB
    Wichman, IS
    [J]. COMBUSTION THEORY AND MODELLING, 2005, 9 (03) : 403 - 416
  • [3] HETEROCLINIC AND HOMOCLINIC BIFURCATIONS IN BISTABLE REACTION DIFFUSION-SYSTEMS
    KOKUBU, H
    NISHIURA, Y
    OKA, H
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 86 (02) : 260 - 341
  • [4] Bifocal homoclinic bifurcations
    Laing, C
    Glendinning, P
    [J]. PHYSICA D, 1997, 102 (1-2): : 1 - 14
  • [5] Imperfect homoclinic bifurcations
    Glendinning, P
    Abshagen, J
    Mullin, T
    [J]. PHYSICAL REVIEW E, 2001, 64 (03):
  • [6] Imperfect homoclinic bifurcations
    Glendinning, P.
    Abshagen, J.
    Mullin, T.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (3 II): : 362081 - 362088
  • [7] Hopf bifurcations and homoclinic tangencies
    Martín, JC
    [J]. NONLINEARITY, 1999, 12 (04) : 893 - 902
  • [8] Homoclinic bifurcations and the Floquet torus
    Martín, JC
    Mora, L
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1173 - 1186
  • [9] Homoclinic bifurcations in n dimensions
    Fowler, A.C.
    [J]. Studies in Applied Mathematics, 1990, 83 (03)
  • [10] Spatial unfolding of homoclinic bifurcations
    Coullet, P
    Risler, E
    Vanderberghe, N
    [J]. NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 399 - 412