Hopf bifurcations and homoclinic tangencies

被引:1
|
作者
Martín, JC [1 ]
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas 1086A, Venezuela
关键词
D O I
10.1088/0951-7715/12/4/309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that a diffeomorphism with a homoclinic orbit associated to a generic Hopf bifurcation point can be perturbed to obtain a homoclinic tangency. Let [F-t] be a generic one-parameter family of diffeomorphisms that unfolds a Hopf bifurcation point which has associated a transverse homoclinic point. For this kind of family we prove also that F-t can be perturbed to obtain a homoclinic tangency for that t such that the rotation number of F-t restricted to the invariant circle, produced by the Hopf bifurcation, is irrational.
引用
收藏
页码:893 / 902
页数:10
相关论文
共 50 条
  • [1] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436
  • [2] Homoclinic tangencies near cascades of period doubling bifurcations
    Catsigeras, E
    Enrich, H
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (03): : 255 - 299
  • [3] On dynamics and bifurcations of area-preserving maps with homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey
    [J]. NONLINEARITY, 2015, 28 (09) : 3027 - 3071
  • [4] Persistent antimonotonic bifurcations and strange attractors for cubic homoclinic tangencies
    Kiriki, Shin
    Soma, Teruhiko
    [J]. NONLINEARITY, 2008, 21 (05) : 1105 - 1140
  • [5] On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies
    Amadeu Delshams
    Marina Gonchenko
    Sergey V. Gonchenko
    [J]. Regular and Chaotic Dynamics, 2014, 19 : 702 - 717
  • [6] On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey V.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2014, 19 (06): : 702 - 717
  • [7] Hopf-homoclinic Bifurcations and Heterodimensional Cycles
    Tomizawa, Shuntaro
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2019, 42 (02) : 449 - 469
  • [8] Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps
    Gonchenko, M.
    Gonchenko, S.
    Ovsyannikov, I.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) : 41 - 61
  • [9] The non-transverse Shil'nikov-Hopf bifurcation:: uncoupling of homoclinic orbits and homoclinic tangencies
    Champneys, AR
    Rodríguez-Luis, AJ
    [J]. PHYSICA D, 1999, 128 (2-4): : 130 - 158
  • [10] Hopf and homoclinic bifurcations for near-Hamiltonian systems
    Tian, Yun
    Han, Maoan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (04) : 3214 - 3234