Hopf bifurcations and homoclinic tangencies

被引:1
|
作者
Martín, JC [1 ]
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas 1086A, Venezuela
关键词
D O I
10.1088/0951-7715/12/4/309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that a diffeomorphism with a homoclinic orbit associated to a generic Hopf bifurcation point can be perturbed to obtain a homoclinic tangency. Let [F-t] be a generic one-parameter family of diffeomorphisms that unfolds a Hopf bifurcation point which has associated a transverse homoclinic point. For this kind of family we prove also that F-t can be perturbed to obtain a homoclinic tangency for that t such that the rotation number of F-t restricted to the invariant circle, produced by the Hopf bifurcation, is irrational.
引用
收藏
页码:893 / 902
页数:10
相关论文
共 50 条
  • [21] Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points
    Gonchenko, Sergey V.
    Ovsyannikov, Ivan I.
    Tatjer, Joan C.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04): : 495 - 505
  • [22] HOMOCLINIC TANGENCIES - MODULI AND TOPOLOGY OF SEPARATRICES
    POSTHUMUS, RA
    TAKENS, F
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 369 - 385
  • [23] PERSISTENT HOMOCLINIC TANGENCIES IN THE HENON FAMILY
    KAN, IT
    KOCAK, H
    YORKE, JA
    [J]. PHYSICA D, 1995, 83 (04): : 313 - 325
  • [24] PERSISTENCE OF HOMOCLINIC TANGENCIES IN HIGHER DIMENSIONS
    ROMERO, N
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 735 - 757
  • [25] Successive homoclinic tangencies to a limit cycle
    Hirschberg, P
    Laing, C
    [J]. PHYSICA D, 1995, 89 (1-2): : 1 - 14
  • [26] PERSISTENT HOMOCLINIC TANGENCIES AND THE UNFOLDING OF CYCLES
    DIAZ, LJ
    URES, R
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (06): : 643 - 659
  • [27] On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and variation of entropy
    Pujals, ER
    Sambarino, M
    [J]. NONLINEARITY, 2000, 13 (03) : 921 - 926
  • [28] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms
    Pujals, ER
    Sambarino, M
    [J]. ANNALS OF MATHEMATICS, 2000, 151 (03) : 961 - 1023
  • [29] New phenomena associated with homoclinic tangencies
    Newhouse, SE
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1725 - 1738
  • [30] UNFOLDING GLOBALLY RESONANT HOMOCLINIC TANGENCIES
    Muni, Sishu Shankar
    McLachlan, Robert, I
    Simpson, David J. W.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (08) : 4013 - 4030