Existence of generic cubic homoclinic tangencies for Henon maps

被引:4
|
作者
Kiriki, Shin [1 ]
Soma, Teruhiko [2 ]
机构
[1] Kyoto Univ, Dept Math, Fushimi Ku, Kyoto 6128522, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
STRANGE ATTRACTORS; SYSTEMS;
D O I
10.1017/S0143385712000168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the Henon map phi(a, b) has a generically unfolding cubic tangency for some (a, b) arbitrarily close to (-2, 0) by applying results of Gonchenko, Shilnikov and Turaev [On models with non-rough Poincare homoclinic curves. Physica D 62(1-4) (1993), 1-14; Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. Chaos 6(1) (1996), 15-31; On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle. Proc. Steklov Inst. Math. 216 (1997), 70-118; Homoclinic tangencies of an arbitrary order in Newhouse domains. Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. 67 (1999), 69-128, translation in J. Math. Sci. 105 (2001), 1738-1778; Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps. Nonlinearity 20 (2007), 241-275]. Combining this fact with theorems in Kiriki and Soma [Persistent antimonotonic bifurcations and strange attractors for cubic homoclinic tangencies. Nonlinearity 21(5) (2008), 1105-1140], one can observe the new phenomena in the Henon family, appearance of persistent antimonotonic tangencies and cubic polynomial-like strange attractors.
引用
收藏
页码:1029 / 1051
页数:23
相关论文
共 50 条
  • [1] PERSISTENT HOMOCLINIC TANGENCIES IN THE HENON FAMILY
    KAN, IT
    KOCAK, H
    YORKE, JA
    [J]. PHYSICA D, 1995, 83 (04): : 313 - 325
  • [2] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436
  • [3] Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps
    Gonchenko, M.
    Gonchenko, S.
    Ovsyannikov, I.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) : 41 - 61
  • [4] On the approximation of Henon-like attractors by homoclinic tangencies
    Ures, R
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 1223 - 1229
  • [5] Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized henon maps
    Gonchenko, S. V.
    Gonchenko, V. S.
    Tatjer, J. C.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2007, 12 (03): : 233 - 266
  • [6] EXISTENCE OF A HOMOCLINIC POINT FOR THE HENON MAP
    MISIUREWICZ, M
    SZEWC, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (03) : 285 - 291
  • [7] Tangencies for real and complex Henon maps:: An analytic method
    Fornæss, JE
    Gavosto, EA
    [J]. EXPERIMENTAL MATHEMATICS, 1999, 8 (03) : 253 - 260
  • [8] On a Homoclinic Origin of Henon-like Maps
    Gonchenko, S. V.
    Gonchenko, V. S.
    Shilnikov, L. P.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5): : 462 - 481
  • [9] Persistent homoclinic tangencies for conservative maps near the identity
    Duarte, P
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 393 - 438
  • [10] Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles
    Lan Wen*
    [J]. Bulletin of the Brazilian Mathematical Society, 2004, 35 : 419 - 452