Persistent homoclinic tangencies for conservative maps near the identity

被引:22
|
作者
Duarte, P [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1096 Lisbon, Portugal
关键词
D O I
10.1017/S0143385700000195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For families of conservative maps near the identity we prove the existence of open sets of parameters with persistence of homoclinic tangencies between stable and unstable leaves of 'thick' horse-shoes. Such families are obtained, for instance, by perturbing integrable Hamiltonian systems in R-2 with a rapidly periodic oscillatory term and then performing a slowing change in the time variable.
引用
收藏
页码:393 / 438
页数:46
相关论文
共 50 条
  • [1] Homoclinic tangencies of arbitrarily high order in conservative two-dimensional maps
    S. V. Gonchenko
    D. V. Turaev
    L. P. Shil’nikov
    [J]. Doklady Mathematics, 2006, 73 : 210 - 213
  • [2] Homoclinic tangencies of arbitrarily high order in conservative two-dimensional maps
    Gonchenko, S. V.
    Turaev, D. V.
    Shil'nikov, L. P.
    [J]. DOKLADY MATHEMATICS, 2006, 73 (02) : 210 - 213
  • [3] PERSISTENT HOMOCLINIC TANGENCIES AND THE UNFOLDING OF CYCLES
    DIAZ, LJ
    URES, R
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (06): : 643 - 659
  • [4] PERSISTENT HOMOCLINIC TANGENCIES IN THE HENON FAMILY
    KAN, IT
    KOCAK, H
    YORKE, JA
    [J]. PHYSICA D, 1995, 83 (04): : 313 - 325
  • [5] Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps
    Gonchenko, Sergey
    Turaev, Dmitry
    Shilnikov, Leonid
    [J]. NONLINEARITY, 2007, 20 (02) : 241 - 275
  • [6] BASINS OF ATTRACTION NEAR HOMOCLINIC TANGENCIES
    TATJER, JC
    SIMO, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 : 351 - 390
  • [7] Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies
    Rios, IL
    [J]. NONLINEARITY, 2001, 14 (03) : 431 - 462
  • [8] Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms
    Pumarino, Antonio
    Tatjer, Joan Carles
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (04): : 971 - 1005
  • [9] Existence of generic cubic homoclinic tangencies for Henon maps
    Kiriki, Shin
    Soma, Teruhiko
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1029 - 1051
  • [10] On dynamics and bifurcations of area-preserving maps with homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey
    [J]. NONLINEARITY, 2015, 28 (09) : 3027 - 3071