Homoclinic bifurcations for the Henon map

被引:55
|
作者
Sterling, D [1 ]
Dullin, HR [1 ]
Meiss, JD [1 ]
机构
[1] Univ Colorado, Dept Math Appl, Boulder, CO 80309 USA
来源
PHYSICA D | 1999年 / 134卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(99)00125-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We find a bound on the parameter range for which the Henon map exhibits a complete binary horseshoe as well as a subshift of finite type. We classify homoclinic bifurcations, and study those for the area preserving case in detail. Simple forcing relations between homoclinic orbits are established. We show that a symmetry of the map gives rise to constraints on certain sequences of homoclinic bifurcations. Our numerical studies also identify the bifurcations that bound intervals on which the topological entropy is apparently constant. (C) 1999 Elsevier Science B.V. All rights reserved. MSC; 58F05; 58F03; 58C15.
引用
收藏
页码:153 / 184
页数:32
相关论文
共 50 条
  • [21] Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized henon maps
    Gonchenko, S. V.
    Gonchenko, V. S.
    Tatjer, J. C.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2007, 12 (03): : 233 - 266
  • [22] Computer assisted proof of the existence of homoclinic tangency for the Henon map and for the forced-damped pendulum
    Wilczak, Daniel
    Zgliczynski, Piotr
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04): : 1632 - 1663
  • [23] Hopf bifurcations and homoclinic tangencies
    Martín, JC
    [J]. NONLINEARITY, 1999, 12 (04) : 893 - 902
  • [24] On a Homoclinic Origin of Henon-like Maps
    Gonchenko, S. V.
    Gonchenko, V. S.
    Shilnikov, L. P.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5): : 462 - 481
  • [25] Transverse bifurcations of homoclinic cycles
    Chossat, P
    Krupa, M
    Melbourne, I
    Scheel, A
    [J]. PHYSICA D, 1997, 100 (1-2): : 85 - 100
  • [26] HOMOCLINIC BIFURCATIONS WITH NONHYPERBOLIC EQUILIBRIA
    DENG, B
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (03) : 693 - 720
  • [27] Homoclinic bifurcations and the Floquet torus
    Martín, JC
    Mora, L
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1173 - 1186
  • [28] Homoclinic bifurcations in n dimensions
    Fowler, A.C.
    [J]. Studies in Applied Mathematics, 1990, 83 (03)
  • [29] Spatial unfolding of homoclinic bifurcations
    Coullet, P
    Risler, E
    Vanderberghe, N
    [J]. NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 399 - 412
  • [30] Resonant homoclinic flip bifurcations
    Homburg A.J.
    Krauskopf B.
    [J]. Journal of Dynamics and Differential Equations, 2000, 12 (4) : 807 - 850