Robust fitting of mixtures of factor analyzers using the trimmed likelihood estimator

被引:4
|
作者
Yang, Li [1 ]
Xiang, Sijia [2 ]
Yao, Weixin [3 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[2] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词
EM algorithm; Factor analysis; Mixture models; Robustness; Trimmed likelihood estimator; ADAPTIVE CHOICE; FINITE MIXTURES;
D O I
10.1080/03610918.2014.999088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 50 条
  • [21] Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data
    Cheng, Tsung-Chi
    Biswas, Atanu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2042 - 2065
  • [22] Robust Gaussian Process Regression with the Trimmed Marginal Likelihood
    Andrade, Daniel
    Takeda, Akiko
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 67 - 76
  • [23] A Robust Version of the Empirical Likelihood Estimator
    Keziou, Amor
    Toma, Aida
    MATHEMATICS, 2021, 9 (08)
  • [24] Nonparametric Mixtures of Factor Analyzers
    Gorur, Dilan
    Rasmussen, Carl Edward
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 922 - 925
  • [25] Mixtures of Bayesian Joint Factor Analyzers for Noise Robust Automatic Speech Recognition
    Cui, Xiaodong
    Goel, Vaibhava
    Kingsbury, Brian
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 3011 - 3015
  • [26] The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers
    Angel Garcia-Escudero, Luis
    Gordaliza, Alfonso
    Greselin, Francesca
    Ingrassia, Salvatore
    Mayo-Iscar, Agustin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 99 : 131 - 147
  • [27] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    TEST, 2022, 31 : 22 - 53
  • [28] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-, I
    TEST, 2022, 31 (01) : 22 - 53
  • [29] Adaptive-Scale Robust Estimator Using Distribution Model Fitting
    Ngo, Thanh Trung
    Nagahara, Hajime
    Sagawa, Ryusuke
    Mukaigawa, Yasuhiro
    Yachida, Masahiko
    Yagi, Yasushi
    COMPUTER VISION - ACCV 2009, PT III, 2010, 5996 : 287 - +
  • [30] Robust fitting of claim severity distributions and the method of trimmed moments
    Brazauskas, Vytaras
    Jones, Bruce L.
    Zitikis, Ricardas
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (06) : 2028 - 2043