Robust fitting of mixtures of factor analyzers using the trimmed likelihood estimator

被引:4
|
作者
Yang, Li [1 ]
Xiang, Sijia [2 ]
Yao, Weixin [3 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[2] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词
EM algorithm; Factor analysis; Mixture models; Robustness; Trimmed likelihood estimator; ADAPTIVE CHOICE; FINITE MIXTURES;
D O I
10.1080/03610918.2014.999088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 50 条
  • [41] Automatic Segmentation and Quantitative Analysis of White Matter Hyperintensities on FLAIR Images Using Trimmed-Likelihood Estimator
    Wang, Rui
    Li, Chao
    Wang, Jie
    Wei, Xiaoer
    Li, Yuehua
    Hui, Chun
    Zhu, Yuemin
    Zhang, Su
    ACADEMIC RADIOLOGY, 2014, 21 (12) : 1512 - 1523
  • [42] The Comparison Between Maximum Weighted and Trimmed Likelihood Estimator of the Simple Circular Regression Model
    Mahmood, Ehab A.
    Midi, Habshah
    Hussin, Abdul Ghapor
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (02)
  • [43] Erratum to: Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator
    N. M. Neykov
    P. Filzmoser
    P. N. Neytchev
    Statistical Papers, 2014, 55 : 917 - 918
  • [44] Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
    Awasthi, Pranjal
    Das, Abhimanyu
    Kong, Weihao
    Sen, Rajat
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [45] A Trimmed Spatial Median Estimator Using Bootstrap Method
    Lee, Dong-Hee
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2010, 23 (02) : 375 - 382
  • [46] A robust maximum likelihood channel estimator for OFDM systems
    Wang, Zhongjun
    Mathew, George
    Xin, Yan
    Tomisawa, Masayuki
    2007 IEEE WIRELESS COMMUNICATIONS & NETWORKING CONFERENCE, VOLS 1-9, 2007, : 169 - +
  • [47] Mixtures of Hidden Truncation Hyperbolic Factor Analyzers
    Paula M. Murray
    Ryan P. Browne
    Paul D. McNicholas
    Journal of Classification, 2020, 37 : 366 - 379
  • [48] Mixtures of skew-t factor analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 326 - 335
  • [49] Voice Conversion Based on Mixtures of Factor Analyzers
    Uto, Yosuke
    Nankaku, Yoshihiko
    Toda, Tomoki
    Lee, Akinobu
    Tokuda, Keiichi
    INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, VOLS 1-5, 2006, : 2278 - +
  • [50] Mixtures of Hidden Truncation Hyperbolic Factor Analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    JOURNAL OF CLASSIFICATION, 2020, 37 (02) : 366 - 379